
290 Iranian Journal of Electrical & Electronic Engineering, Vol. 8, No. 4, Dec. 2012

A Novel and Efficient Hardware Implementation of Scalar
Point Multiplier

M. Masoumi* and H. Mahdizadeh*

Abstract: A new and highly efficient architecture for elliptic curve scalar point
multiplication which is optimized for the binary field recommended by NIST is presented.
To achieve the maximum architectural and timing improvements we have reorganized and
reordered the critical path of the Lopez-Dahab scalar point multiplier carefully such that
sequentially executed operations are separated into parallel operations and operations in the
critical path are diverted to noncritical paths. With G=41, the proposed design is capable of
performing a field multiplication over the extension field with degree 163 in 11.92 µs with
the maximum achievable frequency of 251 MHz on Xilinx Virtex-4 (XC4VLX200) while
22% of the chip area is occupied, where G is the digit size of the underlying digit-serial
finite field multiplier.

Keywords: FPGA Implementation, Lopez-Dahab Algorithm, Scalar Point Multiplication.

1 Introduction1
Elliptic curve cryptography (ECC) is a public key
cryptography system superior to the well-known RSA
cryptography: for the same key size, it gives a higher
security level than RSA [1, 2]. Intuitively, there are
numerous advantages of using field-programmable gate-
array (FPGA) technology to implement in hardware the
computationally intensive operations needed for ECC.
These advantages are comprehensively studied and
listed by Wollinger, et. al. in [3]. In particular,
performance, cost efficiency, and the ability to easily
update the cryptographic algorithm in fielded devices
are very attractive for hardware implementations [4-6].
Several recent FPGA-based hardware implementations
of ECC have achieved high-performance throughput
and efficiency. In this work we present a new
architecture as well as an efficient ECC FPGA
implementation over GF(2163) that has considerable
advantages compared to other implementations as
regards to speed and area. The proposed architecture is
based on a modified Lopez-Dahab elliptic curve point
multiplication algorithm [7] in which we have
reorganized and reordered the data path carefully to
achieve maximum performance and efficiency. As we
know, the efficiency of an algorithm is measured by the
scarce resources it consumes. Typically the measure
used is time, but sometimes other measures such as

Iranian Journal of Electrical & Electronic Engineering, 2012.
Paper first received 4 May 2012 and in revised form 10 Nov. 2012.
* The Authors are with Islamshahr Azad University, P.O. Box: 33135-
369, Sayad Shirazi Ave., Namaz Sqr., Islamshahr, Tehran, Iran.
E-mails: m_masoumi@eetd.kntu.ac.ir, h.mahdizadeh@yahoo.com.

space and number of processors are also considered.
Our basic strategy for architectural timing improvement
is to reorganize the critical path such that logic
structures are implemented in parallel. Usually, this
technique is used whenever a function that currently
evaluates through a serial string of logic can be broken
up and evaluated in parallel. By using a modified field
multiplier and two squarer modules for separating the
paths in which squaring is repeated several times we
have designed an efficient architecture for the Itoh-
Tsujii Multiplicative Inverse Algorithm (ITMIA) [8]. In
the design of the ECC processor, we have separated
sequentially executed operations into parallel operations
and have carefully reordered paths to divert operations
in the critical path to noncritical paths in order to
minimize the combinatorial delay of the critical path.
The architecture of the ECC processor has been
designed in such a way that the calculations of point
addition are separated and are performed independent of
the key which in turn considerably reduces the
processing delay. The results we obtained show that by
using the mentioned optimization techniques and by
implementing a modified G-bit digit serial finite-field
multiplier, with G = 41 our proposed design is able to
compute GF(2163) elliptic curve scalar point
multiplication operations in 11.92 μs with the maximum
achievable frequency of 251 MHz on Xilinx Virtex-4
(XC4VLX200) while 19606 slices or 22% of the chip
area is occupied which makes the design suitable for
high speed applications. The organization of the article
is as follows: In Section 2, a brief introduction of the
mathematical background of ECC is presented. In

Masoumi & Mahdizadeh: A Novel and Efficient Hardware Implementation … 291

Section 3, some previous works are reviewed. In
Section 4, the algorithm optimization decomposition in
parallel and resource occupation for implementation of
the modular arithmetic logic unit and the finite field
arithmetic units in hardware are detailed. In Section 5,
the proposed architecture for ECC processor is
illustrated. In Section 6, implementation results and
performance obtained are compared with those in other
published works. Finally, in the conclusions we
summarize the results of our discussions.

2 Mathematical Background

2.1 Mathematical Background for Elliptic Curves
A finite field GF(2m) consists of 2m elements,

together with addition and multiplication operations that
can be defined over polynomials. For elliptic curves
over GF(2m) we use a cubic equation in which the
variables and coefficients all take values in GF(2m) [1,
2, 9, 10]. It has been turned out that the form of cubic
equation appropriate for cryptographic applications for
elliptic curves which has been recommended by NIST is
ଶݕ ൅ ݕݔ ൌ ଷݔ ൅ ଶݔܽ ൅ ܾ ൫݉݀݋ ܲሺݔሻ൯ (1)
where it is understood that the variables ݔ and ݕ and the
coefficients a and b are elements of GF(2m) and
calculations are performed in GF(2m). Let us consider
the finite field GF(2163) generated using the irreducible
polynomial ܲሺݔሻ ൌ ଵ଺ଷݔ ൅ ଻ݔ ൅ ଺ݔ ൅ ଷݔ ൅ 1 which is
the NIST recommended field for ECC applications. An
elliptic curve group over GF(2m) consists of the points
on the corresponding elliptic curve, together with a
point at infinity, ࣩ. The set of points that satisfy the Eq.
(1) together with the element ࣩ forms an addition
Abelian group with respect to the elliptic point addition
operation. ࣩ serves as the additive identity. Thus, ࣩ = -
 ࣩ and for any point P on the elliptic curve, P + ࣩ = P
and P + (-P) = ࣩ. It can be shown that a finite Abelian
group can be defined based on the set ܧଶ೘(a,b),
provided that ܾ ് 0. The rules for addition can be stated
as follows. For all points P, Q ܧ אଶ೘(a, b):
1) P + ࣩ = P.
2) If ܲ ൌ ሺݔ௉, ,௉ݔ௉ሻ, then െܲ + ሺݕ ௉ሻ = ࣩ. The pointݕ

ሺݔ௉, .௉) is the negative of ܲ, denoted as –Pݕ+௉ݔ
3) If ܲ ൌ ሺݔ௉, ܳ ௉ሻ andݕ ൌ ൫ݔொ, ് ܲ ொ൯ withݕ ܳ and

ܲ ് െ ܳ, then ܴ ൌ ܲ ൅ ܳ ൌ ሺݔோ, ோሻ is determinedݕ
by Eq. (2).

ோݔ ൌ ଶߣ ൅ ߣ ൅ ݔ௉ ൅ ݔொ ൅ ܽ (2)
௉ݔሺߣ =ோݕ ൅ ோݔ + ோሻݔ ൅ ௉ݕ

where ߣ ൌ ௬ೂା ௬ು
௫ೂା ௫ು

4) If ܲ ൌ ሺݔ௉, ܴ ௉ሻ thenݕ ൌ 2ܲ ൌ ሺݔோ, ோሻ isݕ
determined by Eq. (3).

ோݔ ൌ ଶߣ ൅ ߣ ൅ ܽ (3)
௉ݔ = ோݕ

ଶ ൅ ሺߣ ൅ 1ሻݔோ

where λ = ݔ௉ + ௬ು
௫ು

2.2 Elliptic Curve Cryptography
The addition operation in ECC is the counterpart of

modular multiplication in RSA, and multiple additions
is the counterpart of modular exponentiation. To
multiply a point by a constant, the points must be added
continuously with attention to the rule mentioned in
section 2.1 for R = 2P. If k is a positive integer and P a
point on an elliptic curve, the scalar multiple Q = kP is
the point resulting of adding k copies of P to itself.
Scalar multiplication is by far the most important
operation of elliptic curve cryptosystems. The hierarchy
of arithmetic for an Elliptic Curve point multiplication
is depicted in Fig. 1 [9].

In order to generate an Abelian group over elliptic
curves, it is necessary to define an elliptic curve group
law. More specifically, we defined the point addition
and point doubling primitives of Eqs. (2, 3). However,
the computational cost of those equations involves the
calculation of a costly field inverse operation plus
several field multiplications. Hence, there is a strong
motivation for finding alternative point representations
that allow the trading of the costly field inversions by
less expensive field multiplications.

It has been shown that the points on an elliptic curve
can be represented using either two or three coordinates
[2]. In affine-coordinate representation, a finite point on
E(GF(2m)) is specified by two coordinates x, y א GF(2m)
satisfying Eq. (2). The point at infinity has no affine
coordinates. We can make use of the concept of a
projective plane over the field GF(2m). In this way, one
can represent a point using three rather than two
coordinates. Then, given a point P with affine-
coordinate representation x, y there exists a
corresponding projective-coordinate representation X, Y
and Z such that, P(x;y) = P(X;Y;Z).

As a means of avoiding the expensive field inversion
operation, it is more convenient to work with Lopez-
Dahab (LD) projective coordinates which is highly
attractive for hardware implementation.

Fig. 1 Three-layer model for elliptic curve scalar
multiplication.

292 Iranian Journal of Electrical & Electronic Engineering, Vol. 8, No. 4, Dec. 2012

By using the Lopez-Dahab algorithm the projective
group law can be implemented without utilizing field
inversions at the price of increasing the total number of
field multiplications. As a matter of fact, field
inversions are only required when converting from
projective representation to affine representation, which
becomes valuable in situations where we are planning to
perform many point additions and doublings in a
successive manner, such as in elliptic curve scalar
multiplication. The Lopez-Dahab algorithm is shown in
Fig. 2. This algorithm could be divided into three parts.
In the first part, coordinates of the input point is
converted to their corresponding projective coordinates.
In the second part, main operations of the algorithm,
i.e., point doubling and addition are performed based on
the key bits and in the third part, coordinates of the
output point, Q=kP, is converted again to their
corresponding affine coordinates. It is customary to
convert the point P back from projective to affine
coordinates in the final step. This is due to the fact that
affine coordinate representation involves the usage of
only two coordinates and therefore is more useful for
external communication saving some valuable
bandwidth.

INPUT: k = (kt−1, . . ., k1, k0)2 with kt−1 = 1, P = (xP, yP) א E(F2
m).

OUTPUT: kP.

1. X1← xP, Z1←1, X2←ݔ௉
ସ +b, Z2←ݔ௉

ଶ. {Compute (P,2P)}

2. For i from t −2 downto 0 do

 2.1 If ki = 1 then

 T←Z1, Z1←(X1Z2 + X2Z1)2, X1← xP Z1 + X1X2T Z2.

 T←X2, X2←X2
4 +bZ2

4, Z2←T 2Z2
2.

 2.2 Else

 T←Z2, Z2←(X1Z2 + X2Z1)2, X2← xP Z2+X1X2Z1T .

 T←X1, X1←X1
4 +bZ1

4, Z1←T 2Z1
2.

3. x3←X1/Z1.

4. y3←(xP +X1/Z1)[(X1+ xP Z1)(X2+ xP Z2)+ (ݔ௉
ଶ+y)(Z1 Z2)](xP

Z1Z2)−1 + yP.

5. Return (x3, y3)

Fig. 2 The Lopez-Dahab scalar point multiplication over
GF(2m) [2].

3 Previous Works

Several recent FPGA-based hardware
implementations of ECC have achieved high-
performance throughput. Various acceleration
techniques have been used, usually based on parallelism
or precomputation.

The work introduced by Orlando and Paar [11] is
based on the Montgomery method for computing KP
developed by Lopez and Dahab and operates over a
single field. A point multiplication over GF(2167) is
performed in 210ms, using a Galois field multiplier with
an eleven-cycle latency. An ECC processor capable of

operating over multiple Galois fields was presented by
Gura, et al. [12], which performs a point multiplication
over in 143 ߤs, using a Galois field multiplier with
three-cycle latency. Gura, et al. stated two important
conclusions: the efficient implementation of inversion
has a significant impact on overall performance and, as
the latency of multiplication is improved, system tasks
such as reading and writing have a significant impact on
performance. The work introduced by Jarvinen, et al.
[13] uses two bit-parallel multipliers to perform
multiplications concurrently. The multipliers have
several registers in the critical path in order to operate at
high clock frequencies, but the operations are not
pipelined which results in a large design and high
latency. Rodriguez, et al. [14] introduced an FPGA
implementation that performs DBL and ADD in
parallel, containing multiple instances of circuits to
perform the arithmetic functions. It would appear that
the inversion required for coordinate conversion at the
end of the point multiplication is not performed, and
that the quoted point multiplication time does not
include the coordinate conversion, but the stated point
multiplication time is one of the fastest in the literature.
However, the complex structure of the multiplier has a
long critical path, and as a result the overall
performance is let down by quite a low clock frequency
(46.5 MHz). Cheung, et al. in [15] presented a hardware
design that uses a normal basis representation. The
customizable hardware offers a trade between cost and
performance by varying the level of parallelism through
the number of multipliers and level of pipelining. This
implementation completes the scalar point
multiplication in approximately 55μs, although once
again the low clock frequency (43 MHz) limits the
potential performance. In [16], point multiplication is
compared for supersingular and non supersingular
curves. The result of the implementation on Virtex II
Pro 30 is 280 ߤs for point multiplication at 100 MHz
frequency with 8450 occupied slices. In [17] Chelton
and Benaissa presents a pipelined Application-Specific
Instruction set Processor (ASIP) for ECC using FPGAs
which achieves a point multiplication time of 33.05 ߤs
at 91 MHz on a Xilinx Virtex-E FPGA and 19.55 ߤs at
159.3 MHZ on the same platform that we used in this
work, Xilinx Virtex-4 (XC4VLX200) with 16209
occupied slices. Ansari and Hasan in [18] propose an
architecture for elliptic curve scalar multiplication based
on the Montgomery ladder method over finite field
GF(2m). The authors propose a pseudopipelined word-
serial finite field multiplier, with word size w, suitable
for the scalar multiplication. They implement their
design on Xilinx XC2V2000. They are able to compute
GF(2163) elliptic curve scalar multiplication operations
in 46.5 ߤs with the maximum achievable frequency of
100 MHz on Xilinx Virtex-4 (XC4VLX200). The most
notable feature of their design is that it is very compact
as utilizes only 7559 LUTs. Yong et al. in [19]
concentrate on the high-speed hardware implementation

Masoumi & Mahdizadeh: A Novel and Efficient Hardware Implementation … 293

of ECC over GF(2163) in FPGA. They optimize the
algorithm in parallel and design a new architecture for
ECC point multiplication. Their design reach to 93.3
MHz speed on Xilinx XC2V6000 and is able to perform
random elliptic curve scalar point multiplication over
GF(2163) in 34.11 μs. In [20] Kim et. al. present a high
speed implementation based on Gaussian normal bases
in which their proposed design is able to complete a
scalar point multiplication in 10 ߤs but the design is
large as it occupies 24,363 slices on Xilinx XC4VLX80.

4 Hardware Architectures for Finite Field
Operations Over GF(2m)

In this section we will briefly describe some
algorithms and techniques that we used for efficient
implementation of finite field and modular arithmetic
operations over GF(2m). They will be used in realization
of the scalar point multiplier architecture. Field addition
and subtraction in GF(2m) are not investigated since
they are defined as polynomial addition and can be
implemented simply as the XOR addition of the two m-
bit operands [2, 21].

4.1 Finite Field Reduction
Let the field GF(2m) be constructed using the

irreducible polynomial P(x) and let A(x) and
B(x) א GF(2m). Assuming that we have already
computed the product polynomial D(x)= A(x)B(x) and
we want to obtain the modular product of ܥሺݔሻ such
that

ሻݔሺܥ ൌ ሻ (4)ݔሺܲ ݀݋݉ ሻݔሺܦ

Recall that the polynomial product D and the
modular product C; have 2m-1 and m; coordinates,
respectively, i.e.,

ܦ ൌ [݀ଶ௠ିଶ, ݀ଶ௠ିଷ, … , ݀௠ାଵ, ݀௠, … , ݀ଵ, ݀଴];

, ௠ିଵܿ] =ܥ ܿ௠ିଶ, … , ܿଵ, ܿ଴ሿ; (5)

Once the generating polynomial P(x) has been
selected, the reduction step that obtains C from D can be
computed by using XOR and shift operations only. The
reduction modulo P(x) can be viewed as a linear
mapping of the 2m−1 coefficients of D(x) into the m
coefficients of C(x). This mapping can be represented in
matrix notation as follows:

൦

ܿ଴
ܿଵ
ڭ

ܿ௠ିଵ

൪ ൌ

ۏ
ێ
ێ
ێ
ۍ

1 0 … ଴,଴ݎ 0 ଴,௠ିଶݎ …
0 1 … ଵ,଴ݎ 0 ଵ,௠ିଶݎ …

 ڭ ڰ ڭ ڭ ڰ ڭ ڭ
௠ିଵ,௠ିଶݎ ௠ିଵ,଴ݎ 1 0 0

ے
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ێ
ۍ

݀଴
ڭ

݀௠ିଵ
݀௠

ڭ
݀ଶ௠ିଶے

ۑ
ۑ
ۑ
ۑ
ې

 (6)

where
௝,௜ݎ

ൌ ൜ ௝ܲ ; ݆ ൌ 0, ڮ , ݉ െ 1; ݅ ൌ 0
௝ିଵ,௜ିଵݎ ൅ ; ௝,଴ݎ௠ିଵ,௜ିଵݎ ݆ ൌ 0, ڮ , ݉ െ 1; ݅ ൌ 1, ڮ , ݉ െ 2

 (7)

Implementation of the above matrix for different
values of m will increase the required logic gates and
area. One of the most efficient approaches for hardware
implementation of finite field reduction is reduction
using fast reduction algorithm corresponding to field
polynomial. Fig. 3 represents the implementation of the
reduction modulo ܲሺݔሻ ൌ ଵ଺ଷݔ ൅ ଻ݔ ൅ ଺ݔ ൅ ଷݔ ൅ 1. It
has been assumed that the maximum degree of ܦሺݔሻ is
equal to 162+G in which the sentences with degree
163 ≤ i ≤ 162+G are mapped to the sentences with degree
i < 163.

4.2 Finite Field Multiplication
As mentioned before, field multiplication is by far

the most costly arithmetic operation which directly
affects the working frequency and speed of the ECC
processor. One can make an speed-area trade-off by
using a serial-parallel strategy, in which multiplication
of two arbitrary field elements is accomplished by using
a procedure inspired in the well-known digit-
serial/parallel (LSD) finite field multipliers [21, 22]. In
this work, we have designed LSD multiplier directly at
digit-level.

Based on [22], LSD multiplication algorithms are
classified as least significant digit (LSD) first and most
significant digit (MSD) first algorithms. It has been
shown that the LSD first algorithm consumes fewer
gates and has shorter critical path compared with the
MSD first algorithm. Various approaches have been
proposed for efficient implementation of the LSD
multiplier. With digit size G, the total number of digits
in ܨܩሺ2௠ሻ will be ݊ ൌ ඃ݉

ൗܩ ඇ. Assume ܣ ൌ ∑ ௝ܽߙ௝௠ିଵ
௝ୀ଴

and ܤ ൌ ∑ ௝ܾߙ௝௠ିଵ
௝ୀ଴ such that

௜ܤ ൌ

൝
∑ ௝ீିଵߙ௜ା௝כீܾ

௝ୀ଴ 0 ൑ ݅ ൑ ݊ െ 2
∑ ௝௠ିଵିீሺ௡ିଵሻߙ௜ା௝כீܾ

௝ୀ଴ ݅ ൌ ݊ െ 1
 (8)

Fig. 3 Reduction algorithm for ܥሺݔሻ = ܦሺݔሻ mod ܲሺݔሻ

Input: D = [݀ଵ଺ଶାG, ݀ଵ଺ଵାG, … , ݀ଵ, ݀଴],
ܲሺݔሻ ൌ ଵ଺ଷݔ ൅ ଻ݔ ൅ ଺ݔ ൅ ଷݔ ൅ 1;
Output: ܥ= [ܿଵ଺ଶ , ܿଵ଺ଵ, … , ܿଵ, ܿ଴ሿ;

if G = 0 then
 ;D ← ܥ
else
 [ܿଵ଺ଶ , … , ܿீሿ ← [݀ଵ଺ଶିG, … , ݀଴];
 [ܿீିଵ , … , ܿ଴ሿ ← 0;

 for i from 1 to G do

 ܿ௜ିଵ ← ܿ௜ିଵ ݎ݋ݔ ݀ଵ଺ଷା௜ିଵ ;
 ܿଷା௜ିଵ ← ܿଷା௜ିଵ ݎ݋ݔ ݀ଵ଺ଷା௜ିଵ ;
 ܿ଺ା௜ିଵ ← ܿ଺ା௜ିଵ ݎ݋ݔ ݀ଵ଺ଷା௜ିଵ ;
 ܿ଻ା௜ିଵ ← ܿ଻ା௜ିଵ ݎ݋ݔ ݀ଵ଺ଷା௜ିଵ ;

 Return C;

294 Iranian Journal of Electrical & Electronic Engineering, Vol. 8, No. 4, Dec. 2012

ܥ ൌ ܣ כ ሻݔሺܲ ݀݋݉ ܤ ൌ ∑ ௝ܿߙ௝௠ିଵ
௝ୀ଴

ൌ ൭
ܣ଴ܤ ൅ ሻ൯ݔሺ݂ ݀݋݉ ீߙܣଵ൫ܤ ൅ ீߙܣଶ൫ܤ · ሻ൯ݔሺܲ ݀݋݉ ீߙ

൅ܤ௡ିଵ ቀכீߙܣሺ௡ିଶሻ · ሻቁݔሺܲ ݀݋݉ ீߙ
൱

 ሻ (9)ݔሺܲ ݀݋݉

The LSD algorithm is summarized in Fig. 4.
Consider the two-step classical multiplication over
GF(2m) which involves in a polynomial multiplication
and a reduction modulo an irreducible polynomial. The
product of the polynomials A(x) and B(x),
D(x)=A(x)×B(x), is a polynomial with maximum degree
2m−2 and can be written as follows.

ە
۔

ۓ ෍ ܽ௜ܾ௞ି௜ ; ݇ ൌ 0, ڮ , ݉ െ 1
௞

௜ୀ଴

෍ ܽ௞ି௜ାሺ௠ିଵሻܾ௜ିሺ௠ିଵሻ ; ݇ ൌ ݉, ڮ ,2݉ െ 2
ଶ௠ିଶ

௜ୀ௞

 (10)

We implemented the above scheme in a matrix form.
Thus, we put A in a three-section multiplicand matrix.
The upper part is a lower triangular submatrix. The
middle part is a ሺ݉ െ ܩ ൅ 1ሻ ൈ submatrix. The lower ܩ
part is an upper triangular submatrix.

...

a0

a1

aG-2

a0

a0

0
0 0

0

0

0 ...
...

...

...

...

aG-3

...

am-(G-1)

0

...

...

...

...

aG-1 aG-2 a1 a0

aG

am-1

a2

...aG-1

... ...

am-2 am-G

...

0
0

0

0

...

...

...

...

...

am-1

am-1

am-10 0

am-2 am-(G-1)

am-(G-2)

b0

bG-1

...*

G*1

=

d0

dm+G-2

...

(m+G-1)*1

 (11)

Input: A,B א GF(2m)
Output: C א GF(2m), C = AB over GF(2m)
Set: A(0) = a, D(0) = 0, ݊ ൌ ඃ݉

ൗܩ ඇ
for i from 1 to n do

1ሻ ܣሺ௜ሻ ൌ ,ሻݔሺܲ ݀݋݉ ீߙሺ௜ିଵሻܣ
2ሻ ܦሺ௜ሻ ൌ ሺ௜ିଵሻܣ · ௜ିଵܤ ൅ ܦሺ௜ିଵሻ

Where
ሺ௜ሻܣ ൌ ∑ ௝ܣ

ሺ௜ሻߙ௝௠ିଵ
௝ୀ଴

ሺ௜ሻܦ ൌ ∑ ௝݀
ሺ௜ሻߙ௝௠ାீିଶ

௝ୀ଴ and

௜ܤ ൌ ൝
∑ ௝ீିଵߙ௜ା௝כீܾ

௝ୀ଴ 0 ൑ ݅ ൑ ݊ െ 2

∑ ሺ௡ିଵሻכ௝௠ିଵିீߙ௜ା௝כீܾ
௝ୀ଴ ݅ ൌ ݊ െ 1

end for
 3) Return ܥ ൌ ሻݔሺܲ ݀݋݉ ሺ௡ሻܦ

Fig. 4 The LSD multiplication algorithm [22].

a3b0 a2b1 a1b2 a0b3

d4

a3b0

a2b1

a1b2

a0b3

d4

(a) (b)

Fig. 5 XORing four bits together, (a) direct method, and (b).
by using a binary graph tree.

By converting Eq. (10) into the matrix form of Eq.
(11), the G th term of the polynomial D(x) or dG can be
expressed as Eq. (12).

݀ீ ൌ ܽீିଵܾ଴ ൅ ܽீିଶܾଵ ൅ ڮ ൅ ܽ଴ܾீିଵ (12)
where G is the digit size of the underlying LSD
multiplier. If each terms of Eq. (12) is considered as a
bit string, dG could be obtained by a binary XOR of the
terms of this equation.

As it is seen in Fig. 5(a), using this method will lead
to a critical path with length (G-1)∆௑ைோ, where ∆௑ைோ is
the delay of an XOR gate. Now, if we use a binary tree
graph for XORing this bit string as it is seen in Fig.
5(b), by placing the binary bits at the head branches of
the tree we can reach to the result or root of the tree
with path length of ሺ݃݋݈ڿଶሺܩሻۀሻ∆௑ைோ. We used this idea
to reduce the critical path of the LSD multiplier.

Now, we describe the implementation architecture
for the LSD multiplier. As it was seen, there are three
steps for implementing this algorithm. Steps 1 and 2 of
the LSD multiplier as is represented in Eq. (13) can be
implemented in parallel.

ሺ௜ሻܣ ൌ ሻ (13)ݔሺܲ ݀݋݉ ீߙ ሺ௜ିଵሻܣ
ሺ௜ሻܦ ൌ ௜ିଵܤ ሺ௜ିଵሻܣ ൅ ሺ௜ିଵሻܦ

Step 1 of the LSD algorithm reduces m+G bits to m
bits and step 2 shows the partial products. For obtaining
the final result, m+G-1 bits is reduced to m bits in step
3. The implementation architecture for different stages
of the LSD multiplier is depicted in Fig. 6. Step 1 is
performed by the left side of Fig. 6, step 2 is performed
by the multiplication function and step 3 is performed
by the right side of Fig. 6.

Masoumi & Mahdizadeh: A Novel and Efficient Hardware Implementation … 295

4.3 Finite-Field Multiplicative Inversion
Based on Fermat's Little Theorem (FLT) and using

an ingenious rearrangement of the required field
operations, the Itoh-Tsujii Multiplicative Inverse
Algorithm (ITMIA) was presented in [8]. The main
advantage of ITMIA algorithm in comparison with the
Extended Euclidian Algorithm is that it does not require
a separate inversion module. When computing the
multiplicative inverse using ITIMA algorithm, we need
to iteratively perform 81 squaring in the algorithm’s
addition chain. Since these iterative computations are
done sequentially, further parallelism is not possible [2].
This algorithm is briefly illustrated in appendix.

Now, to design an efficient multiplicative inversion
block based on the ITMIA, it is necessary to think how
to reduce its critical path. In other words, the critical
path of the multiplier and the critical path of the
inversion block should be along with each other. If we
use only one squarer module in the inversion block, this
module should accomplish squaring for the input of the
inversion block, output of the multiplier and also its
own output (for consecutive squaring) and therefore, we
are forced to use a 3 to 1 multiplexer at the input of the
squarer. Output of this squarer together with a number
of combinational gates such as AND, OR, and NOT
gates are connected to the input of the multiplier. As a
result of such architecture, the critical path will place on
the squarer which will create a bottleneck for reducing
the clock cycle time. We can break this critical path by
changing the architecture so that a 2 to 1 multiplexer is
used in place of a 3 to 1 multiplexer at the cost of
adding another squarer in the inverter architecture. The
first squarer is used for squaring in stages 1, 3, 8 and
also for the final stage squaring, while the other required
squaring in Table A.1 (See Appendix for more detail) is
accomplished with the second squarer [2]. Thanks to, in
stages 1, 3, 8, u0 = 1 and only one squaring needs to be
performed while at the other stages several squaring are
performed (see appendix for more details). The
schematics of the designed architecture for
multiplicative inversion over finite field GF(2163) is
shown in Fig. 7.

5 Proposed Architecture for the ECC Processor

As was mentioned, the most important strategy for
architectural timing improvements is to reorganize and
reorder the critical path such that logic structures are
implemented in parallel and to divert operations in the
critical path to a noncritical path. This technique should
be used whenever a function that currently evaluates
through a serial string of logic can be broken up and
evaluated in parallel. This assumption can dramatically
speed up the implementation of a large design. For the
design of architecture for ECC scalar multiplier, two
different parts are considered; the first part that involves
in calculations in the affine coordinate system and the
other part that involves in the calculations for
converting projective coordinate to affine coordinates.

For projective calculations, parts 1 and 2 of the LD
algorithm are considered. In the design of this part of
the processor, the number of computational units is
chosen in such a way that allows parallel computations
to be performed. Hence, we use three field multipliers to
implement the main loop of the algorithm in which
point addition and doubling are carried out. So,
according to Section 2.1 of the LD algorithm, at the first
stage, the three multiplications ଵܼܺଶ, ܺଶܼଵ, ܼܶଶ (T՜
ܺଶሻ are performed in parallel by using three multipliers
as is shown in Fig. 6, and then, the three other
multiplications ݔP ܼ1, ܺ1ܺ2ܶ ܼ2 (T←Z1), ܾܼଶ

ସ are
accomplished in parallel at the second stage. Hence, the
delay of each iteration is reduced from six field
multiplication delay to two field multiplications. For
this part of the processor (computations in the projective
coordinates) we have used five squarers and two adders,
as is shown in Fig. 6. Four squarers are used for
computing ܼଵ

ସ, X1
4, Z2

4 and X2
4 while the fifth squarer is

used for (X1Z2+X2Z1)2. In addition, It is essential after
the first field multiplication to save the result of
(X1Z2+X2Z1)2 and (X2

4+bZ2
4) in the registers t1 and t2

respectively for the later calculations. The most
important modules in the design of the scalar point
multiplier processor are field multiplication, field
inversion and field squaring. The key point here is that
the critical path must be placed on the longest path
among these modules. Since the inverter module was
designed such that its critical path is coincided with the
multiplier’s critical path and since the multiplier’s path
is larger than the squarer’s path, the critical path need to
be placed on the multiplier.

It is notable that if resource sharing is used in
implementing the field squarer, the number of required
computational elements will decrease; however, since
for squaring of different values we are forced to use
multiplexers at the input of this computational unit that
are controlled with conditional statements, the critical
path length will increase. To avoid long critical path, the
architecture should be designed synchronous and by
using combinational logic. In addition, in the design of
the projective calculations, separate calculations have
not been performed for using the initial values of part 1
of the LD algorithm, since if further computational
modules are designed for these calculations, the
complexity of the critical path and the amount of
required area will increase. We can avoid additional or
unnecessary calculations by using calculations of part 2
of the algorithm for obtaining the results for part 1. In
the proposed design, calculations of part 1 need to be
performed whenever the most significant bit of the key
is 1. So, when ki = 1, if the values of Eq. (14) are used
in the calculations of part 2.1, then the required initial
values of the LD algorithm are obtained in accordance
with part 1 of the LD algorithm.

X1←1, Z1←0, X2← xP, Z2←1 (14)

296 Iranian Journal of Electrical & Electronic Engineering, Vol. 8, No. 4, Dec. 2012

The results of the calculation in section 2.1 of the
LD algorithm are obtained as Eq. (15) by using the
values of Eq. (14).

X1← xP, Z1←1, X2← xP
4+b, Z2← xP

2 (15)

As it is seen in Fig. 7, whenever the key bit is equal
to 1, the values of ‘1’, ‘0’, and ݔ௉ are entered into the
multiplexers to connect to the appropriate inputs to
make the terms of Eq. (15). After designing the
computational units for projective coordinates, its input
and output ports should be connected together based on
the key bits to complete the iteration in the LD
algorithm. When designing the architecture for
calculations in the projective coordinate system in part
2.1 of the LD algorithm, to set up part 2.2 of the
algorithm which works with zero bits of the key, it is
enough to swap X1 and Z1 with X2 and Z2 respectively
when the key bits change. So, we need to use a 2 to 1
multiplexer that is controlled with the key bits.
Therefore, in order to avoid long critical path, another
strategy should be considered. As it is seen from the
architecture of Fig. 8, in order to prevent further
complexity when swapping X1 and Z1 with X2 and Z2,
the input-output paths of point addition and doubling
have been separated from each other. The idea behind
this subject is to connect the outputs of point addition
and doubling to the inputs of the adder, independent of
the values of the key bits .For example, if we consider
the following point addition operation for ki =1, inputs
to this operation are X1, X2, Z1 and Z2 and outputs are
saved in X1 and Z1.

T←Z1, Z1← (X1Z2+X2Z1)2, X1← xPZ1+X1X2TZ2 (16)
When a key bit changes from ki = 1 to ki = 0, this

change will lead to change in the terms X1Z2+X2Z1 and
X1X2TZ2. However, since whenever the value of any key
bit changes only X1 and Z1 are swapped with X2 and Z2,
the terms X1Z2+X2Z1 and X1X2TZ2 will remain
unchanged. So, the point addition operation can be
repeated in the iterative part of the algorithm without
involvements of the key bits and only after the end of
the loop, the registers are swapped with each other. The
point doubling operation for ki = 1 is performed in
accordance with Eq. (17).

T←X2, X2←X2
4 +bZ2

4, Z2←T 2Z2
2 (17)

This operation for ki = 0 is done by swapping X2 and
Z2 with X1 and Z1 respectively. Therefore, output
registers are swapped in order to provide proper inputs
for the point doubling operation based on the key bits in
the iterative part of the LD algorithm. In order to realize
that when the initial values are entered into the
calculations and also to be aware of the iterations of the
LD algorithm based on the key bits, it is necessary to
combine the module designed in Fig. 8 with a key shift
register in a new structure. The aim of this work is that
the inputs and outputs of the architecture of Fig. 8 are
properly connected to each other when all values of the
key are scanned. The new design is shown in Fig. 9. The
second part of the processor involves in calculations that
convert projective coordinates to affine coordinates. It is
obvious from the LD algorithm that parts 3 and 4 of this
algorithm require many calculations to be implemented.

Fig.6 Block diagram of the LSD multiplier implemented in this work.

Masoumi & Mahdizadeh: A Novel and Efficient Hardware Implementation … 297

Fig. 7 Schematic of the designed architecture for finite field multiplicative inversion.

Fig. 8 The architecture designed for the computation of point addition and point doubling in projective coordinates of the LD
algorithm.

Fig. 9 Architecture of point addition and doubling iteration based on the key bits.

298 Iranian Journal of Electrical & Electronic Engineering, Vol. 8, No. 4, Dec. 2012

In addition, most of the calculations are performed
in a sequential manner. A possible sequence of the
instructions from standard Projective to affine
coordinates is proposed in [2] in which only one
inversion unit is used for converting projective
coordinates to affine coordinates (see Fig. A-1 in the
appendix for more detail). As it is seen form the LD
algorithm, by calculating (xPZ1Z2)−1, another inversion,
X1/Z1, can be calculated using (xPZ2X1)*(xPZ1Z2)−1. In
this approach, the number of field inverters is reduced
with the cost of increase in the number of field
multipliers. However, considering the sequence of the
algorithm and due to repeated referrals to these
multipliers, if we use several field multipliers the length
of the critical path will increase. For implementing this
algorithm, ten field multiplications should be
performed. In addition, for performing twelfth to
seventeenth steps, we need to wait for the calculation of
(xPZ1Z2)−1 and therefore a long computational delay will
be inevitable. As it is seen from the second part of the
scalar multiplier processor which involves in converting
projective coordinates to affine coordinates, there are
many computations that should be carried out
sequentially.

As was mentioned, in order to keep the critical path
on the multiplier, we need to design this part of the
algorithm with combinational logic as much as possible.
Another approach for the implementation is based on
step 4 of the LD algorithm as it is seen in Eq. (18).

y3 ← (xP+X1/Z1)[(X1+xZ1)(X2+xPZ2)+(xP
2+yp)(Z1 Z2)]

(xPZ1Z2)−1 + yP (18)

There are two field inversions and five field
multiplications in Eq. (18). One way to implement the
above function is to use two field inverter and three
parallel field multiplier units. However, this causes that
these multipliers to remain unused in other stages since
the results of multiplications in the next steps are
dependent to the results of the previous steps. This
subject will cause an unbreakable delay which prohibits
further speed up. Another design that leads to more
efficient implementation is to enter (Z1Z2)−1 in the
square brackets of Eq. (18). This will result in Eq. (19).

y3 ← (xP +X1/Z1)[(X1/Z1+ xP)(X2/Z2+ xP)+(xP 2+y)]
(xP)−1 + yP (19)

Therefore, first we calculate Z1
−1, Z2

−1 and xP
−1 using

three parallel field inverters concurrently and then
implement five required multiplications of Eq. (19) by
using two multipliers that are implemented in parallel in
three stages. Also, for this part of calculations we also
need five adder units. The final value of variable x in
affine coordinate system in accordance with part 2 of
the LD algorithm is x3=X1/Z1 for which we have to
calculate Z1

−1 by using an inverter and then multiply the
result by X1. Since X1*Z1

−1 is used for the next
multiplication, (X1/Z1+xP)*(X2/Z2+xP), it is necessary to
save the result of X1*Z1

−1. However, saving this value in

a register and using it in next clock cycles will increase
the critical path. To avoid this, this register should be
eliminated. Since in the conversion of coordinates,
implementation of the multipliers have been done in a
parallel combinational manner (i.e., five multiplications
are performed in three stages using two multipliers), in
the second stage of multiplication the result of first
multiplication will be lost. However, in the third stage
of multiplication one of the multipliers is unused and
could be used for calculating X1*Z1

−1. So, the
multiplication X1*Z1

−1 is repeated in the third stage to
eliminate the need for saving data in this section of the
processor. Finally, one of the important steps that must
be considered in the design of scalar multiplier is to
select the word length (G). Due to iterative calculations
in the projective coordinate system (part 2 of the LD
algorithm), fast performing of calculations is very
important in the design of an efficient ECC processor.
So, choosing large G values for the multipliers used in
the design of the first part of the processor (i.e., the
multipliers in Fig. 8 or projective calculations) will be
more appropriate. The word lengths that were used in
this part of the processor is G1= 41. Since calculations
of the third and fourth part of the LD algorithm are used
only once at the end of the algorithm and there is no
iteration as part 2 of the algorithm, there is no need to
select large values for G. Instead, since there are
relatively a large number of computational units in this
part of the processor, a relatively small value for G
should be chosen to reduce the required implementation
area. The word’s length used in this part of the
processor is G2=11.

6 Implementation Results

To perform the calculations, the required parameters
including curve order (The number of points defined on
an elliptic curve over GF(2m)), the coefficients and the
base point coordinates are selected based on the NIST
proposal in [10].

a = 1
b = 0x20A601907B8C953CA1481EB10512F78744A3205FD
n = 0x40000000000000000000292FE77E70C12A4234C33
xP = 0x3F0EBA16286A2D57EA0991168D4994637E8343E36
yP = 0x0D51FBC6C71A0094FA2CDD545B11C5C0C797324F1

The ECC processor was implemented using
synthesizable VHDL codes. The placement, route
process, and timing analysis of the synthesized designs
were accomplished using Xilinx ISE 12.1 software.
Before final synthesis, we made low-level or synthesis
optimization that is provided by synthesis tool and is
performed by its place and route tools. Most
implementation tools for FPGA synthesis provide the
designer with dozens of optimization options. They are
Trade-offs with speed versus area; Resource sharing for
area optimization; Pipelining, retiming, and register
balancing for performance optimization and etc. The
main problem most designers run into is that it is not
clear what these options do exactly and more

Masoumi & Mahdizadeh: A Novel and Efficient Hardware Implementation … 299

importantly how these can be used to actually optimize
a design. We used Pipelining, retiming, and register
balancing that led to better results compared with the
other options. Performance of the proposed scalar
multiplication is shown in Table 1. As it is seen, a high-
speed implementation is obtained with G1 = 41. The
proposed design completes the computations in the
projective coordinates in 326 כ ሺ݉ڿ ⁄ଵܩ cycles 1304 + (ۀ
and coordinate conversion in 15 כ ሺ݉ڿ ⁄ଶܩ 214 + (ۀ
cycles. The term “݉ڿ ⁄ଵܩ indicates the number of ”ۀ
cycles required to perform finite field multiplication in
part 2 of the LD algorithm or calculations in the
projective coordinate system. The term “݉ڿ ⁄ଶܩ ”ۀ
indicates the number of cycles required to perform finite
field multiplication in parts 3 and 4 of the LD algorithm
or calculations for converting projective coordinates to
affine coordinates. In Table 2, a number of high speed
elliptic curve processors are compared with the
proposed one. It should be noted that an ideal
comparison would be therefore comparing all resources
on the similar FPGA device. A design using dedicated
resources of the device will show less logic resources as
compared to other design which implements the whole
logic without using any dedicated unit of the device. It
also affects the throughput statistic. It has been
experimentally observed that the implementation of
even the same code on different grades of the same
family of devices influence the final design's
throughput. That situation becomes more crucial when
the same design targets two different devices by two
different manufactures. In such cases, for the purpose of
classifying an FPGA design, we can ignore some of
those factors. It can be said, as a first approximation,
that the fastest design is the one which achieves fastest
speed no matter what type of device has been targeted
for design implementation. However, when considering
a compact design (a design optimized for hardware
area), this criterion cannot be applied. The comparison
of two compact designs can be only justified if it is
made between similar devices. Both area and
throughput factors provide a measure for comparing
different designs. Additionally, in order to decide how
efficient a design is, we utilize the efficiency defined as
்௛௥௢௨௚௛௣௨௧

஺௥௘௔
ሺ

ಾ್೔೟
ೞ

௦௟௜௖௘௦
ሻ as a figure of merit, where

Throughput is defined as
௪௢௥௞௜௡௚ ௙௥௘௤௨௘௡௖௬ ൈே௨௠௕௘௥ ௢௙ ஻௜௧௦

ே௨௠௕௘௥ ௢௙ ஼௬௖௟௘௦
 and hardware

area can be defined as number of four inputs LUTs as
well as CLB slices. The last column in the table shows

the algorithmic efficiency defined as throughput/area. It
would be more accurate to use throughput/#slices, but
slice counts were not reported by the authors of other
designs. Therefore, we have used throughput/#LUTs.
As it is seen from Table 2, the proposed design is more
efficient than the other designs reported in the open
literature. Please notice that the work presented in [17]
consumes less than half of hardware resources
compared with our implementation, however with the
proposed design is three times faster than this
implementation.

Conclusions

A high-performance ECC processor was
implemented using FPGA technology. We used a
careful parallel implementation strategy to reduce the
critical path of the Itoh-Tsujii’s Finite-Field Inversion
and used the binary graph tree idea to reduce the critical
path and the required gates for the implementation of
the LSD multiplier which in turn will reduce the critical
path of the field inverter and the processor. In addition,
in the design of the ECC processor by using three
parallel multiplier units and reducing the number of
unused cycles in each stage we reduced the processor
delay which is mainly related to the calculations in the
projective coordinate system. Separation of point
doubling path from point addition path and using
appropriate initial values for the initial setup of the
processor reduced the complexity of the processor. In
the design of the second part of the processor which
involves in converting projective coordinates to affine
coordinates and with considering the subject that the
field multiplier module is used many times and this part
of the processor has little impact on the final delay, we
used the minimum possible word length to save our
hardware resources as much as possible. The results
show that our design is suitable for high speed and/or
compact applications and therefore, the designed
architecture can be well suited to the applications that
require high performance. The proposed design is able
to compute GF(2163) elliptic curve scalar multiplication
operations in 11.92 ߤs with the maximum achievable
frequency of 251 MHz on Xilinx Virtex-4
(XC4VLX200) while 19604 slices or 22% of the chip
area is occupied. Although prototyped in reconfigurable
logic, the architecture does not exclusively make use of
reconfigurability and it is also well-suited for other
implementation technologies such as ASIC
implementations.

Table 1 Performance of the proposed scalar multiplier.

G1 G2 Freq. (MHz) Time (μs) No. of Cycles Area (Slices) Area (LUT) Efficiency

41 11 251.054 11.92 2993 19604 36727 372

300 Iranian Journal of Electrical & Electronic Engineering, Vol. 8, No. 4, Dec. 2012

Table 2 Performance of the scalar multipliers.

Efficiency
(FF)

Area

(LUT) (slices)

Time

(μs)

Freq.

(MHz)
FPGA m Ref.

265 1769 3002 - 210 76.7 XCV400E 167
Orlando and Paar

[10]

56 6321 20068 - 144 66.4 XCV2000E 163 N. Gura [11]

44 - - 18079 106 90.2 VinexII V8000 163 Jarvinen et. al. [12]

- - -

18314 +

24

RAMs

63 46.5 XCV2600E 163
Rodriguez et. al.

[13]

- - - - 60 54 XC2V600-4 163 Cheung [14]

- - - 8450 280 100 Virtex II pro 30 163 Sakiyama [15]

316 - 26364 16209 19.55 153.9 Virtex-4 VLX200 163
Chelton and

Benaissa [16]

532 - 7559 3416 46.5 100 XC2V2000 163
Ansari and Hasan

[17]

340 - 2812 13376 34.11 93.3 XC2V6000 163 Yong et.al. [18]

- - - 24,363 10 143 XC4VLX80 163 Kim et. al. [19]

70 1930 10017 - 75 66 Virtex 2000E 163
Lutz and Hasan

[23]

- - - - 49 - Stratix II 163
Jarvinen and Skytta

[24]

Appendix

The ITIMA Algorithm
Let a be any arbitrary nonzero element in the field

GF(2m). Let us consider an addition chain U of length
for m — 1 and its associated sequence V. Then the
multiplicative inverse a-1 א GF(2m) of a can be found by
repeatedly applying Eq. (A-1).

௞ା௝ሺܽሻߚ ൌ ሺܽሻ൧2݆݇ߚൣ

,݆ ݕ݊ܽ ݎ݋݂ ሺܽሻ݆ߚ ݇ ൒ 0 (A-1)

Hence, given ߚ௨బሺܽሻ ൌ ܽଶభିଵ ൌ ܽ, for each ݑ௜,
1 ൑ ݅ ൑ :compute ,ݐ

ቂߚ௨೔భ
ሺܽሻቃ

ଶೠ೔మ

2ݑߚ
ሺܽሻ = 1݅ݑߚା2݅ݑ

ሺܽሻ = ߚ௨೔
ሺܽሻ = ܽଶି݅ݑଵ (A-2)

A final squaring step yields the required result since:

௨೟ߚൣ
ሺܽሻ൧ଶ ൌ ቀܽ2೘షభെ1ቁ

ଶ
ൌ ܽିଵ (A-3)

Table A-1 represents ߚ௜ሺܽሻ coefficient generation
for m = 163.

Fig. A-1 Standard projective to affine coordinates algorithm
[2].

Require: Q1 = (X1, Z1), Q2 = (X2, Z2), P = (xP, yP) א
E(GF(2m))
Ensure: (x3, y3)/* affine coordinates */
1: λ1 = Z1 * Z2;
2: λ2= Z1 * xP;
3: λ3 = λ2 + X1;
4: λ4= Z2 * xP;
5: λ5 = λ4* X1;
6: λ6 = λ4+ X2;
7: λ7 = λ3 * λ6;
8: λ8= xP

 2 + yP;
9: λ9= λ1 * λ8;
10: λ10 = λ7 + λ9;
11: λ11= xP* λ1;
12: λ12 = inverse (λ11);
13: λ13= λ12 * λ10;
14: x3= λ14 = λ5 * λ12;
15: λ15 = λ14 + xP;
16: λ16= λ15 * λ13;
17: y3= λ16 +yP;
18: Return (x3, y3)

Masoumi & Mahdizadeh: A Novel and Efficient Hardware Implementation … 301

Table A-1 β୧ሺaሻ Coefficient Generation for m-1 =162 [2].

i ݑ௜ rule ቂߚ௨೔భ
ሺܽሻቃ

ଶೠ೔మ

· ௨೔మߚ
ሺܽሻ

௨೔ߚ
ሺܽሻ

ൌ ܽଶೠ೔ିଵ

0 1 - -
௨బߚ

ሺܽሻ

ൌ ܽଶభିଵ

௨బߚൣ ଴ݑ2 2 1
ሺܽሻ൧ଶೠబ

· ௨బߚ
ሺܽሻ

௨భߚ
ሺܽሻ

ൌ ܽଶమିଵ

௨భߚൣ ଵݑ2 4 2
ሺܽሻ൧ଶೠభ

· ௨భߚ
ሺܽሻ

௨మߚ
ሺܽሻ

ൌ ܽଶరିଵ

௨మߚൣ ଶݑ଴൅ݑ 5 3
ሺܽሻ൧ଶೠబ

· ௨బߚ
ሺܽሻ

௨యߚ
ሺܽሻ

ൌ ܽଶఱିଵ

௨యߚൣ ଷݑ2 10 4
ሺܽሻ൧ଶೠయ

· ௨యߚ
ሺܽሻ

௨రߚ
ሺܽሻ

ൌ ܽଶభబିଵ

௨రߚൣ ସݑ2 20 5
ሺܽሻ൧ଶೠర

· ௨రߚ
ሺܽሻ

௨ఱߚ
ሺܽሻ

ൌ ܽଶమబିଵ

௨ఱߚൣ ହݑ2 40 6
ሺܽሻ൧ଶೠఱ

· ௨ఱߚ
ሺܽሻ

௨లߚ
ሺܽሻ

ൌ ܽଶరబିଵ

௨లߚൣ ଺ݑ2 80 7
ሺܽሻ൧ଶೠల

· ௨లߚ
ሺܽሻ

௨ళߚ
ሺܽሻ

ൌ ܽଶఴబିଵ

௨ళߚൣ ଻ݑ଴൅ݑ 81 8
ሺܽሻ൧ଶೠబ

· ௨బߚ
ሺܽሻ

௨ఴߚ
ሺܽሻ

ൌ ܽଶఴభିଵ

௨ఴߚൣ ଼ݑ2 162 9
ሺܽሻ൧ଶೠఴ

· ௨ఴߚ
ሺܽሻ

௨వߚ
ሺܽሻ

ൌ ܽଶభలమିଵ

References
[1] Hankerson D., Menezes A. and Vanstone, S.,

Guide to elliptic curve cryptography, Springer-
Verlag, 2004.

[2] Rodriguez-Henriquez F., Saqib N. A., Diaz-Prez
A. and Koc C. K., Cryptographic Algorithms on
Reconfigurable Hardware, Springer, 2006.

[3] Wollinger T., Guajardo J. and Paar C., “Security
on FPGAs: State-of-the-art and Implementations
Attacks”, ACM Trans. on Embedded Computing
Sys., Vol. 3, No 3, pp. 534-574, 2004.

[4] Masoumi M., “A DPA-resistant FPGA
implementation of AES cryptosystem with very
low hardware overhead”, Iranian Journal of
Electrical and Electronic Engineering, Vol. 8,
No. 1, 2012, pp. 16-27, 2012.

[5] Fereidunian A., Lesani H., Lucas C., Lehtonen M.
and Nordman M. M., “A Systems approach to
information technology (IT) infrastructure design
for utility management automation systems”,

Iranian Journal of Electrical and Electronic
Engineering, Vol. 2, No 3, pp. 91-104, 2006.

[6] Karimi G. R. and Mirzakuchaki S., “Behavioral
modeling and simulation of semiconductor
devices and circuits using VHDL-AMS”,
Iranian Journal of Electrical and Electronic
Engineering, Vol. 4, No. 4, pp.165-175, 2008.

[7] Lopez J. and Dahab R., “Fast multiplication on
elliptic curves over GF(2m) without
precomputation”, the Workshop on
Cryptographic Hardware Embedded Syst.
(CHES), Worcester, MA, USA, 1999.

[8] Itoh T. and Tsujii S., “A Fast Algorithm for
Computing Multiplicative Inverses in GF(2m)
Using Normal Basis”, Information and
Computing, Vol. 78, pp. 171-177, 1988.

[9] Stallings W., Cryptography and Ntework
Security, 4th Ed., Prentice-Hall, 2006.

[10] FIPS 186-2, Available at:
http://csrc.nist.gov/publications/fips/

[11] Orlando G. and Paar C., “A high-performance
reconfigurable elliptic curve processor for
GF(2m)”, Cryptographic Hardware and
Embedded Systems (CHES), Worcester, MA,
USA, 2000.

[12] Gura N., Shantz S. C., Eberle H., Gupta S., Gupta
V., Finchelstein D., Goupy E. and Stebila D., “An
end-to-end systems approach to elliptic curve
cryptography”, Workshop Cryptographic
Hardware. Embedded Syst. (CHES), CA, USA,
2002.

[13] Jarvinen K., Tommiska M. and Skytta J., “A
scalable architecture for elliptic curve point
multiplication”, ICFPT, Brisbane, Australia,
2004.

[14] Rodriguez-Henriquez F., Saqib N. A. and Diaz-
Perez A., “A fast parallel implementation of
elliptic curve point multiplication over GF(2m),”
Microprocessors Microsyst., Vol. 28, pp. 329-
339, 2004.

[15] Cheung R. C. C., Telle N. J., Luk W. and Cheung
P. Y. K., “Customizable elliptic curve
cryptosystems”, IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., Vol. 13, No. 9, pp. 1048-
1059, Sep. 2005.

[16] Sakiyama K., Batina V, Preneel K. and
Verbauwhede I., “Superscalar coprocessor for
high-speed curve-based cryptography", Workshop
on Cryptographic Hardware and Embedded
Systems (CHES), Yokohama, Japan, Oct. 10-13,
2006, Lecture Notes in Computer Science, Vol.
4249, Springer, pp. 415 -429, 2006.

[17] Chelton W. N. and Benaissa M., “Fast elliptic
curve cryptography on FPGA", IEEE Trans. on
Very Large Scale Integration (VLSI) Systems,
Vol. 16, No. 2, pp. 198-205, 2008.

[18] Ansari B. and Hasan A., “High-Performance
Architecture of Elliptic Curve Scalar

302

multip
No. 11

[19] Yong-
archite
proces
A, Vol

[20] Kim C
Implem
Curve
J. of S
893-90

[21] Desch
Finite-

[22] Song
Serial/
VLSI S
1998.

[23] Kumm
Digit S
Crypto
10, pp

[24] Lutz J
based
ITCC,
2004.

[25] Jarvine
high-sp
crypto
Scale I
pp. 11

plication”, IEE
1, pp. 1443-14
Ping D., “

ecture of e
ssor over GF(
l. 10, No. 2, pp
C. H., Kwon
mentation of

Cryptograph
Systems Archi
00, 2008.
amps J-P., H
-Field Arithme
L. and Parhi
/Parallel Fini
Signal Proce

mar S., Wollin
Serial GF(2m)
ography”, IEE
. 1306-1311, 2

J. and Hasan A
elliptic curve
Las Vegas,

en K. and Sk
peed proce
graphy,” IEEE
Integration (V
62-1175, 2008

 I

EE Trans. on
453, 2008.
“High-perform
elliptic curv
(2163)”, J. Zhe
p. 301-310, 20
S. and Hong

f High Perfo
hic Processor
itecture, Vol.

Hardware Im
etic, McGraw
i K. K., “Lo
ite Field Mu
essing, Vol. 1

nger T. and Pa
) Multipliers

EE Trans. Com
2006.
A., “High per
e cryptograph

USA, Vol.

kytta J., “On p
essors for
E Transaction

VLSI) Systems
8.

Iranian Journ

Comp., Vol.

mance hardw
e cryptograp
ejiang Univ.
009.
g C. P., “FP
ormance Ellip

Over GF(216

 54, No. 10,

mplementation
w Hill, 2009.

w-Energy Di
ultipliers,” J.
19, pp. 149-1

aar C., “Optim
for Curve Ba

mp., Nol. 55, N

rformance FP
hic coprocesso
2, pp. 486-4

parallelization
elliptic cu

ns on Very La
s, Vol. 16, No

nal of Electrica

57,

ware
phy
Sci.

GA
ptic

63)”,
pp.

n of

igit-
 of

166,

mum
ased
No.

PGA
or",
492,

n of
urve
arge
o. 9,

sid
cou
dig
and

al & Electron

e-channel attac
untermeasures a
gital signal pro
d cryptosystems

nic Engineerin

Massoud M
from Guila
in 1996
Postdoctora
University
Iran, in
respectivel
engineering
degree. His

cks to encryp
and efficient VL
ocessing system
s.

Hossein M
B.Sc. and
engineering
University
Iran. His
high speed
cryptograp
FPGA and
of asymme

ng, Vol. 8, No.

Masoumi recei
an University,
and M.Sc.,

al from K.
of Technolog

1999, 2006
y, all in
g and all w
s research inter

ption systems
LSI architectur

ms, error-correc

Mahdizadeh r
M.Sc. in com

g from K.
of Technolog

research intere
d architecture
hic systems,

d hardware imp
etric encryption

 4, Dec. 2012

ived his BSc
Rasht, Iran
Ph.D. and
N. Toosi

gy, Tehran,
and 2009
electronics

with honor
rests include
and related

re design for
cting codes,

received his
mmunication

N. Toosi
gy, Tehran,
ests include

design for
particularly

plementation
systems.

2

