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A Novel and Efficient Hardware Implementation of Scalar 
Point Multiplier 
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Abstract: A new and highly efficient architecture for elliptic curve scalar point 
multiplication which is optimized for the binary field recommended by NIST is presented. 
To achieve the maximum architectural and timing improvements we have reorganized and 
reordered the critical path of the Lopez-Dahab scalar point multiplier carefully such that 
sequentially executed operations are separated into parallel operations and operations in the 
critical path are diverted to noncritical paths. With G=41, the proposed design is capable of 
performing a field multiplication over the extension field with degree 163 in 11.92 µs with 
the maximum achievable frequency of 251 MHz on Xilinx Virtex-4 (XC4VLX200) while 
22% of the chip area is occupied, where G is the digit size of the underlying digit-serial 
finite field multiplier. 
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1 Introduction1 
Elliptic curve cryptography (ECC) is a public key 
cryptography system superior to the well-known RSA 
cryptography: for the same key size, it gives a higher 
security level than RSA [1, 2]. Intuitively, there are 
numerous advantages of using field-programmable gate-
array (FPGA) technology to implement in hardware the 
computationally intensive operations needed for ECC. 
These advantages are comprehensively studied and 
listed by Wollinger, et. al. in [3]. In particular, 
performance, cost efficiency, and the ability to easily 
update the cryptographic algorithm in fielded devices 
are very attractive for hardware implementations [4-6]. 
Several recent FPGA-based hardware implementations 
of ECC have achieved high-performance throughput 
and efficiency. In this work we present a new 
architecture as well as an efficient ECC FPGA 
implementation over GF(2163) that has considerable 
advantages compared to other implementations as 
regards to speed and area. The proposed architecture is 
based on a modified Lopez-Dahab elliptic curve point 
multiplication algorithm [7] in which we have 
reorganized and reordered the data path carefully to 
achieve maximum performance and efficiency. As we 
know, the efficiency of an algorithm is measured by the 
scarce resources it consumes. Typically the measure 
used is time, but sometimes other measures such as 
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space and number of processors are also considered. 
Our basic strategy for architectural timing improvement 
is to reorganize the critical path such that logic 
structures are implemented in parallel. Usually, this 
technique is used whenever a function that currently 
evaluates through a serial string of logic can be broken 
up and evaluated in parallel. By using a modified field 
multiplier and two squarer modules for separating the 
paths in which squaring is repeated several times we 
have designed an efficient architecture for the Itoh-
Tsujii Multiplicative Inverse Algorithm (ITMIA) [8]. In 
the design of the ECC processor, we have separated 
sequentially executed operations into parallel operations 
and have carefully reordered paths to divert operations 
in the critical path to noncritical paths in order to 
minimize the combinatorial delay of the critical path. 
The architecture of the ECC processor has been 
designed in such a way that the calculations of point 
addition are separated and are performed independent of 
the key which in turn considerably reduces the 
processing delay. The results we obtained show that by 
using the mentioned optimization techniques and by 
implementing a modified G-bit digit serial finite-field 
multiplier, with G = 41 our proposed design is able to 
compute GF(2163) elliptic curve scalar point 
multiplication operations in 11.92 μs with the maximum 
achievable frequency of 251 MHz on Xilinx Virtex-4 
(XC4VLX200) while 19606 slices or 22% of the chip 
area is occupied which makes the design suitable for 
high speed applications. The organization of the article 
is as follows: In Section 2, a brief introduction of the 
mathematical background of ECC is presented. In 
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Section 3, some previous works are reviewed. In 
Section 4, the algorithm optimization decomposition in 
parallel and resource occupation for implementation of 
the modular arithmetic logic unit and the finite field 
arithmetic units in hardware are detailed. In Section 5, 
the proposed architecture for ECC processor is 
illustrated. In Section 6, implementation results and 
performance obtained are compared with those in other 
published works. Finally, in the conclusions we 
summarize the results of our discussions. 
 
2 Mathematical Background 

2.1   Mathematical Background for Elliptic Curves 
A finite field GF(2m) consists of 2m elements, 

together with addition and multiplication operations that 
can be defined over polynomials. For elliptic curves 
over GF(2m) we use a cubic equation in which the 
variables and coefficients all take values in GF(2m) [1, 
2, 9, 10]. It has been turned out that the form of cubic 
equation appropriate for cryptographic applications for 
elliptic curves which has been recommended by NIST is 
ଶݕ ൅ ݕݔ ൌ ଷݔ  ൅ ଶݔܽ  ൅  ܾ ൫݉݀݋ ܲሺݔሻ൯                      (1) 
where it is understood that the variables ݔ and ݕ and the 
coefficients a and b are elements of GF(2m) and 
calculations are performed in GF(2m). Let us consider 
the finite field GF(2163) generated using the irreducible 
polynomial ܲሺݔሻ ൌ ଵ଺ଷݔ  ൅ ଻ݔ ൅ ଺ݔ ൅ ଷݔ ൅ 1 which is 
the NIST recommended field for ECC applications. An 
elliptic curve group over GF(2m) consists of the points 
on the corresponding elliptic curve, together with a 
point at infinity, ࣩ. The set of points that satisfy the Eq. 
(1) together with the element ࣩ forms an addition 
Abelian group with respect to the elliptic point addition 
operation. ࣩ serves as the additive identity. Thus, ࣩ = -
 ࣩ and for any point P on the elliptic curve, P + ࣩ = P 
and P + (-P) = ࣩ. It can be shown that a finite Abelian 
group can be defined based on the set ܧଶ೘(a,b), 
provided that ܾ ് 0. The rules for addition can be stated 
as follows. For all points P, Q ܧ אଶ೘(a, b): 
1) P + ࣩ = P. 
2) If ܲ ൌ ሺݔ௉, ,௉ݔ௉ሻ, then െܲ + ሺݕ  ௉ሻ = ࣩ. The pointݕ

ሺݔ௉,  .௉) is the negative of ܲ, denoted as –Pݕ+௉ݔ
3) If ܲ ൌ ሺݔ௉, ܳ ௉ሻ andݕ ൌ ൫ݔொ, ് ܲ ொ൯ withݕ  ܳ and 

ܲ ് െ ܳ, then ܴ ൌ ܲ ൅ ܳ ൌ  ሺݔோ,  ோሻ is determinedݕ
by Eq. (2). 

ோݔ ൌ ଶߣ  ൅ ߣ  ൅ ݔ௉ ൅ ݔொ ൅  ܽ                                         (2) 
௉ݔሺߣ =ோݕ ൅ ோݔ + ோሻݔ ൅                                        ௉ݕ

where ߣ ൌ  ௬ೂା ௬ು
௫ೂା ௫ು

 

4) If ܲ ൌ ሺݔ௉, ܴ ௉ሻ thenݕ ൌ 2ܲ ൌ  ሺݔோ,  ோሻ isݕ
determined by Eq. (3). 

ோݔ ൌ ଶߣ  ൅ ߣ  ൅ ܽ                                                                (3) 
௉ݔ = ோݕ

ଶ ൅ ሺߣ ൅ 1ሻݔோ              

where λ = ݔ௉ +  ௬ು
௫ು

 

2.2   Elliptic Curve Cryptography 
The addition operation in ECC is the counterpart of 

modular multiplication in RSA, and multiple additions 
is the counterpart of modular exponentiation. To 
multiply a point by a constant, the points must be added 
continuously with attention to the rule mentioned in 
section 2.1 for R = 2P. If k is a positive integer and P a 
point on an elliptic curve, the scalar multiple Q = kP is 
the point resulting of adding k copies of P to itself. 
Scalar multiplication is by far the most important 
operation of elliptic curve cryptosystems. The hierarchy 
of arithmetic for an Elliptic Curve point multiplication 
is depicted in Fig. 1 [9]. 

In order to generate an Abelian group over elliptic 
curves, it is necessary to define an elliptic curve group 
law. More specifically, we defined the point addition 
and point doubling primitives of Eqs. (2, 3). However, 
the computational cost of those equations involves the 
calculation of a costly field inverse operation plus 
several field multiplications. Hence, there is a strong 
motivation for finding alternative point representations 
that allow the trading of the costly field inversions by 
less expensive field multiplications. 

It has been shown that the points on an elliptic curve 
can be represented using either two or three coordinates 
[2]. In affine-coordinate representation, a finite point on 
E(GF(2m)) is specified by two coordinates x, y א GF(2m) 
satisfying Eq. (2). The point at infinity has no affine 
coordinates. We can make use of the concept of a 
projective plane over the field GF(2m). In this way, one 
can represent a point using three rather than two 
coordinates. Then, given a point P with affine-
coordinate representation x, y there exists a 
corresponding projective-coordinate representation X, Y 
and Z such that, P(x;y) = P(X;Y;Z). 

As a means of avoiding the expensive field inversion 
operation, it is more convenient to work with Lopez-
Dahab (LD) projective coordinates which is highly 
attractive for hardware implementation. 
 

 
Fig. 1 Three-layer model for elliptic curve scalar 
multiplication. 
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By using the Lopez-Dahab algorithm the projective 
group law can be implemented without utilizing field 
inversions at the price of increasing the total number of 
field multiplications. As a matter of fact, field 
inversions are only required when converting from 
projective representation to affine representation, which 
becomes valuable in situations where we are planning to 
perform many point additions and doublings in a 
successive manner, such as in elliptic curve scalar 
multiplication. The Lopez-Dahab algorithm is shown in 
Fig. 2. This algorithm could be divided into three parts. 
In the first part, coordinates of the input point is 
converted to their corresponding projective coordinates. 
In the second part, main operations of the algorithm, 
i.e., point doubling and addition are performed based on 
the key bits and in the third part, coordinates of the 
output point, Q=kP, is converted again to their 
corresponding affine coordinates. It is customary to 
convert the point P back from projective to affine 
coordinates in the final step. This is due to the fact that 
affine coordinate representation involves the usage of 
only two coordinates and therefore is more useful for 
external communication saving some valuable 
bandwidth. 
 

INPUT: k = (kt−1, . . ., k1, k0)2 with kt−1 = 1, P = (xP, yP) א E(F2
m ). 

OUTPUT: kP. 

1. X1← xP,  Z1←1,  X2←ݔ௉
ସ +b,  Z2←ݔ௉

ଶ. {Compute (P,2P)} 

2. For i from t −2 downto 0 do 

     2.1 If ki = 1 then 

               T←Z1, Z1←(X1Z2 + X2Z1)2, X1← xP Z1 + X1X2T Z2. 

               T←X2, X2←X2
4 +bZ2

4, Z2←T 2Z2
2. 

     2.2 Else 

               T←Z2, Z2←(X1Z2 + X2Z1)2, X2← xP Z2+X1X2Z1T . 

                T←X1, X1←X1
4 +bZ1

4, Z1←T 2Z1
2. 

3. x3←X1/Z1. 

4. y3←( xP +X1/Z1)[(X1+ xP Z1)(X2+ xP Z2)+ (ݔ௉
ଶ+y)(Z1 Z2)]( xP 

Z1Z2)−1 + yP. 

5. Return (x3, y3) 

Fig. 2 The Lopez-Dahab scalar point multiplication over 
GF(2m) [2]. 
 
 
3 Previous Works 

Several recent FPGA-based hardware 
implementations of ECC have achieved high-
performance throughput. Various acceleration 
techniques have been used, usually based on parallelism 
or precomputation. 

The work introduced by Orlando and Paar [11] is 
based on the Montgomery method for computing KP 
developed by Lopez and Dahab and operates over a 
single field. A point multiplication over GF(2167) is 
performed in 210ms, using a Galois field multiplier with 
an eleven-cycle latency. An ECC processor capable of 

operating over multiple Galois fields was presented by 
Gura, et al. [12], which performs a point multiplication 
over in 143 ߤs, using a Galois field multiplier with 
three-cycle latency. Gura, et al. stated two important 
conclusions: the efficient implementation of inversion 
has a significant impact on overall performance and, as 
the latency of multiplication is improved, system tasks 
such as reading and writing have a significant impact on 
performance. The work introduced by Jarvinen, et al. 
[13] uses two bit-parallel multipliers to perform 
multiplications concurrently. The multipliers have 
several registers in the critical path in order to operate at 
high clock frequencies, but the operations are not 
pipelined which results in a large design and high 
latency. Rodriguez, et al. [14] introduced an FPGA 
implementation that performs DBL and ADD in 
parallel, containing multiple instances of circuits to 
perform the arithmetic functions. It would appear that 
the inversion required for coordinate conversion at the 
end of the point multiplication is not performed, and 
that the quoted point multiplication time does not 
include the coordinate conversion, but the stated point 
multiplication time is one of the fastest in the literature. 
However, the complex structure of the multiplier has a 
long critical path, and as a result the overall 
performance is let down by quite a low clock frequency 
(46.5 MHz). Cheung, et al. in [15] presented a hardware 
design that uses a normal basis representation. The 
customizable hardware offers a trade between cost and 
performance by varying the level of parallelism through 
the number of multipliers and level of pipelining. This 
implementation completes the scalar point 
multiplication in approximately 55μs, although once 
again the low clock frequency (43 MHz) limits the 
potential performance. In [16], point multiplication is 
compared for supersingular and non supersingular 
curves. The result of the implementation on Virtex II 
Pro 30 is 280 ߤs for point multiplication at 100 MHz 
frequency with 8450 occupied slices. In [17] Chelton 
and Benaissa presents a pipelined Application-Specific 
Instruction set Processor (ASIP) for ECC using FPGAs 
which achieves a point multiplication time of 33.05 ߤs 
at 91 MHz on a Xilinx Virtex-E FPGA and 19.55 ߤs at 
159.3 MHZ on the same platform that we used in this 
work, Xilinx Virtex-4 (XC4VLX200) with 16209 
occupied slices. Ansari and Hasan in [18] propose an 
architecture for elliptic curve scalar multiplication based 
on the Montgomery ladder method over finite field 
GF(2m). The authors propose a pseudopipelined word-
serial finite field multiplier, with word size w, suitable 
for the scalar multiplication. They implement their 
design on Xilinx XC2V2000. They are able to compute 
GF(2163) elliptic curve scalar multiplication operations 
in 46.5 ߤs with the maximum achievable frequency of 
100 MHz on Xilinx Virtex-4 (XC4VLX200). The most 
notable feature of their design is that it is very compact 
as utilizes only 7559 LUTs. Yong et al. in [19] 
concentrate on the high-speed hardware implementation 
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of ECC over GF(2163) in FPGA. They optimize the 
algorithm in parallel and design a new architecture for 
ECC point multiplication. Their design reach to 93.3 
MHz speed on Xilinx XC2V6000 and is able to perform 
random elliptic curve scalar point multiplication over 
GF(2163) in 34.11 μs. In [20] Kim et. al. present a high 
speed implementation based on Gaussian normal bases 
in which their proposed design is able to complete a 
scalar point multiplication in 10 ߤs but the design is 
large as it occupies 24,363 slices on Xilinx XC4VLX80. 
 
4 Hardware Architectures for Finite Field 
Operations Over GF(2m) 

In this section we will briefly describe some 
algorithms and techniques that we used for efficient 
implementation of finite field and modular arithmetic 
operations over GF(2m). They will be used in realization 
of the scalar point multiplier architecture. Field addition 
and subtraction in GF(2m) are not investigated since 
they are defined as polynomial addition and can be 
implemented simply as the XOR addition of the two m-
bit operands [2, 21]. 
 

4.1   Finite Field Reduction 
Let the field GF(2m) be constructed using the 

irreducible polynomial P(x) and let A(x) and 
B(x) א GF(2m). Assuming that we have already 
computed the product polynomial D(x)= A(x)B(x) and 
we want to obtain the modular product of ܥሺݔሻ such 
that 

ሻݔሺܥ ൌ  ሻ                                                    (4)ݔሺܲ ݀݋݉ ሻݔሺܦ

Recall that the polynomial product D and the 
modular product C; have 2m-1 and m; coordinates, 
respectively, i.e., 
 

ܦ ൌ [݀ଶ௠ିଶ, ݀ଶ௠ିଷ, … , ݀௠ାଵ, ݀௠, … , ݀ଵ,  ݀଴]; 

, ௠ିଵܿ] =ܥ ܿ௠ିଶ, … , ܿଵ,  ܿ଴ሿ;                                           (5) 

Once the generating polynomial P(x) has been 
selected, the reduction step that obtains C from D can be 
computed by using XOR and shift operations only. The 
reduction modulo P(x) can be viewed as a linear 
mapping of the 2m−1 coefficients of D(x) into the m 
coefficients of C(x). This mapping can be represented in 
matrix notation as follows: 

൦

ܿ଴
ܿଵ
ڭ

ܿ௠ିଵ

൪ ൌ

ۏ
ێ
ێ
ێ
ۍ

1     0 … ଴,଴ݎ          0   ଴,௠ିଶݎ   … 
0     1 … ଵ,଴ݎ          0   ଵ,௠ିଶݎ   … 

    ڭ       ڰ        ڭ                 ڭ   ڰ  ڭ       ڭ    
௠ିଵ,௠ିଶݎ      ௠ିଵ,଴ݎ       1       0     0     

ے 
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ێ
ۍ

݀଴
ڭ

݀௠ିଵ
݀௠

ڭ
݀ଶ௠ିଶے

ۑ
ۑ
ۑ
ۑ
ې

  (6) 

where 
௝,௜ݎ

ൌ ൜ ௝ܲ ;  ݆ ൌ 0, ڮ , ݉ െ 1; ݅ ൌ 0                                                        
௝ିଵ,௜ିଵݎ ൅ ; ௝,଴ݎ௠ିଵ,௜ିଵݎ ݆ ൌ 0, ڮ , ݉ െ 1; ݅ ൌ 1, ڮ , ݉ െ 2  

               (7) 

Implementation of the above matrix for different 
values of m will increase the required logic gates and 
area. One of the most efficient approaches for hardware 
implementation of finite field reduction is reduction 
using fast reduction algorithm corresponding to field 
polynomial. Fig. 3 represents the implementation of the 
reduction modulo ܲሺݔሻ ൌ ଵ଺ଷݔ ൅ ଻ݔ ൅ ଺ݔ ൅ ଷݔ ൅ 1. It 
has been assumed that the maximum degree of ܦሺݔሻ is 
equal to 162+G in which the sentences with degree 
163 ≤ i ≤ 162+G are mapped to the sentences with degree 
i < 163. 
 

4.2   Finite Field Multiplication 
As mentioned before, field multiplication is by far 

the most costly arithmetic operation which directly 
affects the working frequency and speed of the ECC 
processor. One can make an speed-area trade-off by 
using a serial-parallel strategy, in which multiplication 
of two arbitrary field elements is accomplished by using 
a procedure inspired in the well-known digit-
serial/parallel (LSD) finite field multipliers [21, 22]. In 
this work, we have designed LSD multiplier directly at 
digit-level. 

Based on [22], LSD multiplication algorithms are 
classified as least significant digit (LSD) first and most 
significant digit (MSD) first algorithms. It has been 
shown that the LSD first algorithm consumes fewer 
gates and has shorter critical path compared with the 
MSD first algorithm. Various approaches have been 
proposed for efficient implementation of the LSD 
multiplier. With digit size G, the total number of digits 
in ܨܩሺ2௠ሻ will be ݊ ൌ ඃ݉

ൗܩ ඇ. Assume ܣ ൌ ∑ ௝ܽߙ௝௠ିଵ
௝ୀ଴  

and ܤ ൌ ∑ ௝ܾߙ௝௠ିଵ
௝ୀ଴  such that 

௜ܤ ൌ

൝
∑ ௝ீିଵߙ௜ା௝כீܾ

௝ୀ଴       0 ൑ ݅ ൑ ݊ െ 2
∑ ௝௠ିଵିீሺ௡ିଵሻߙ௜ା௝כீܾ

௝ୀ଴ ݅ ൌ ݊ െ 1
                                (8) 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Reduction algorithm for ܥሺݔሻ = ܦሺݔሻ mod ܲሺݔሻ 
 

 
Input: D = [݀ଵ଺ଶାG, ݀ଵ଺ଵାG, … , ݀ଵ,  ݀଴], 
ܲሺݔሻ ൌ ଵ଺ଷݔ ൅ ଻ݔ ൅ ଺ݔ ൅ ଷݔ ൅ 1; 
Output: ܥ= [ܿଵ଺ଶ , ܿଵ଺ଵ, … , ܿଵ, ܿ଴ሿ; 
 
if  G = 0  then 
 ;D ← ܥ        
else 
        [ܿଵ଺ଶ , … , ܿீሿ  ← [݀ଵ଺ଶିG, … ,  ݀଴]; 
        [ܿீିଵ , … , ܿ଴ሿ  ← 0;  
 
        for i from 1 to G do 

    ܿ௜ିଵ      ←  ܿ௜ିଵ     ݎ݋ݔ  ݀ଵ଺ଷା௜ିଵ ;  
    ܿଷା௜ିଵ  ←  ܿଷା௜ିଵ ݎ݋ݔ  ݀ଵ଺ଷା௜ିଵ ; 
    ܿ଺ା௜ିଵ  ←  ܿ଺ା௜ିଵ ݎ݋ݔ  ݀ଵ଺ଷା௜ିଵ ; 
    ܿ଻ା௜ିଵ  ←  ܿ଻ା௜ିଵ  ݎ݋ݔ  ݀ଵ଺ଷା௜ିଵ ; 

   
 Return C; 
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ܥ ൌ ܣ כ ሻݔሺܲ ݀݋݉ ܤ ൌ ∑ ௝ܿߙ௝௠ିଵ
௝ୀ଴     

    

ൌ ൭
ܣ଴ܤ ൅ ሻ൯ݔሺ݂ ݀݋݉ ீߙܣଵ൫ܤ ൅ ீߙܣଶ൫ܤ · ሻ൯ݔሺܲ ݀݋݉ ீߙ

൅ܤ௡ିଵ ቀכீߙܣሺ௡ିଶሻ · ሻቁݔሺܲ ݀݋݉ ீߙ
൱  

 ሻ             (9)ݔሺܲ ݀݋݉ 

The LSD algorithm is summarized in Fig. 4. 
Consider the two-step classical multiplication over 
GF(2m) which involves in a polynomial multiplication 
and a reduction modulo an irreducible polynomial. The 
product of the polynomials A(x) and B(x), 
D(x)=A(x)×B(x), is a polynomial with maximum degree 
2m−2 and can be written as follows. 

ە
۔

ۓ ෍ ܽ௜ܾ௞ି௜ ;  ݇ ൌ 0, ڮ , ݉ െ 1
௞

௜ୀ଴
                           

෍ ܽ௞ି௜ାሺ௠ିଵሻܾ௜ିሺ௠ିଵሻ ; ݇ ൌ ݉, ڮ ,2݉ െ 2
ଶ௠ିଶ

௜ୀ௞

 (10) 

We implemented the above scheme in a matrix form. 
Thus, we put A in a three-section multiplicand matrix. 
The upper part is a lower triangular submatrix. The 
middle part is a ሺ݉ െ ܩ ൅ 1ሻ ൈ  submatrix. The lower ܩ
part is an upper triangular submatrix. 

 

...

a0

a1

aG-2

a0

a0

0
0 0

0

0

0 ...
...

... ... ...

...

...

aG-3

...

am-(G-1)

0

...

...

...

...

aG-1 aG-2 a1 a0

aG

am-1

a2

...aG-1

... ...

am-2 am-G

...

0
0

0

0

...

...

... ... ...

...

...

am-1

am-1

am-10 0

am-2 am-(G-1)

am-(G-2)

 

b0

bG-1

...*

G*1

=

 

d0

dm+G-2

...

(m+G-1)*1

                  (11) 
 

Input: A,B א GF(2m) 
Output:  C א GF(2m), C =  AB over GF(2m) 
Set: A(0) = a, D(0) = 0, ݊ ൌ ඃ݉

ൗܩ ඇ 
for i from 1 to n do 

   
1ሻ ܣሺ௜ሻ ൌ          ,ሻݔሺܲ ݀݋݉ ீߙሺ௜ିଵሻܣ
2ሻ ܦሺ௜ሻ ൌ ሺ௜ିଵሻܣ · ௜ିଵܤ  ൅ ܦሺ௜ିଵሻ     

 

Where 
ሺ௜ሻܣ      ൌ ∑ ௝ܣ

ሺ௜ሻߙ௝௠ିଵ
௝ୀ଴  

ሺ௜ሻܦ      ൌ ∑ ௝݀
ሺ௜ሻߙ௝௠ାீିଶ

௝ୀ଴             and 

௜ܤ ൌ ൝
∑ ௝ீିଵߙ௜ା௝כீܾ

௝ୀ଴       0 ൑ ݅ ൑ ݊ െ 2

∑ ሺ௡ିଵሻכ௝௠ିଵିீߙ௜ା௝כீܾ
௝ୀ଴ ݅ ൌ ݊ െ 1

  

end for 
   3) Return  ܥ ൌ   ሻݔሺܲ ݀݋݉ ሺ௡ሻܦ

Fig. 4 The LSD multiplication algorithm [22]. 

a3b0 a2b1 a1b2 a0b3
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Fig. 5 XORing four bits together, (a) direct method, and (b). 
by using a binary graph tree. 
 

By converting Eq. (10) into the matrix form of Eq. 
(11), the G th term of the polynomial D(x) or dG can be 
expressed as Eq. (12). 

݀ீ ൌ ܽீିଵܾ଴ ൅ ܽீିଶܾଵ  ൅ ڮ ൅ ܽ଴ܾீିଵ                    (12) 
where G is the digit size of the underlying LSD 
multiplier. If each terms of Eq. (12) is considered as a 
bit string, dG could be obtained by a binary XOR of the 
terms of this equation. 

As it is seen in Fig. 5(a), using this method will lead 
to a critical path with length (G-1)∆௑ைோ, where ∆௑ைோ is 
the delay of an XOR gate. Now, if we use a binary tree 
graph for XORing this bit string as it is seen in Fig. 
5(b), by placing the binary bits at the head branches of 
the tree we can reach to the result or root of the tree 
with path length of ሺ݃݋݈ڿଶሺܩሻۀሻ∆௑ைோ. We used this idea 
to reduce the critical path of the LSD multiplier. 

Now, we describe the implementation architecture 
for the LSD multiplier. As it was seen, there are three 
steps for implementing this algorithm. Steps 1 and 2 of 
the LSD multiplier as is represented in Eq. (13) can be 
implemented in parallel. 

ሺ௜ሻܣ ൌ  ሻ                                         (13)ݔሺܲ ݀݋݉ ீߙ ሺ௜ିଵሻܣ 
ሺ௜ሻܦ   ൌ ௜ିଵܤ ሺ௜ିଵሻܣ   ൅                                           ሺ௜ିଵሻܦ

Step 1 of the LSD algorithm reduces m+G bits to m 
bits and step 2 shows the partial products. For obtaining 
the final result, m+G-1 bits is reduced to m bits in step 
3. The implementation architecture for different stages 
of the LSD multiplier is depicted in Fig. 6. Step 1 is 
performed by the left side of Fig. 6, step 2 is performed 
by the multiplication function and step 3 is performed 
by the right side of Fig. 6. 
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4.3   Finite-Field Multiplicative Inversion 
Based on Fermat's Little Theorem (FLT) and using 

an ingenious rearrangement of the required field 
operations, the Itoh-Tsujii Multiplicative Inverse 
Algorithm (ITMIA) was presented in [8]. The main 
advantage of ITMIA algorithm in comparison with the 
Extended Euclidian Algorithm is that it does not require 
a separate inversion module. When computing the 
multiplicative inverse using ITIMA algorithm, we need 
to iteratively perform 81 squaring in the algorithm’s 
addition chain. Since these iterative computations are 
done sequentially, further parallelism is not possible [2]. 
This algorithm is briefly illustrated in appendix. 

Now, to design an efficient multiplicative inversion 
block based on the ITMIA, it is necessary to think how 
to reduce its critical path. In other words, the critical 
path of the multiplier and the critical path of the 
inversion block should be along with each other. If we 
use only one squarer module in the inversion block, this 
module should accomplish squaring for the input of the 
inversion block, output of the multiplier and also its 
own output (for consecutive squaring) and therefore, we 
are forced to use a 3 to 1 multiplexer at the input of the 
squarer. Output of this squarer together with a number 
of combinational gates such as AND, OR, and NOT 
gates are connected to the input of the multiplier. As a 
result of such architecture, the critical path will place on 
the squarer which will create a bottleneck for reducing 
the clock cycle time. We can break this critical path by 
changing the architecture so that a 2 to 1 multiplexer is 
used in place of a 3 to 1 multiplexer at the cost of 
adding another squarer in the inverter architecture. The 
first squarer is used for squaring in stages 1, 3, 8 and 
also for the final stage squaring, while the other required 
squaring in Table A.1 (See Appendix for more detail) is 
accomplished with the second squarer [2]. Thanks to, in 
stages 1, 3, 8, u0 = 1 and only one squaring needs to be 
performed while at the other stages several squaring are 
performed (see appendix for more details). The 
schematics of the designed architecture for 
multiplicative inversion over finite field GF(2163) is 
shown in Fig. 7. 
 
5 Proposed Architecture for the ECC Processor 

As was mentioned, the most important strategy for 
architectural timing improvements is to reorganize and 
reorder the critical path such that logic structures are 
implemented in parallel and to divert operations in the 
critical path to a noncritical path. This technique should 
be used whenever a function that currently evaluates 
through a serial string of logic can be broken up and 
evaluated in parallel. This assumption can dramatically 
speed up the implementation of a large design. For the 
design of architecture for ECC scalar multiplier, two 
different parts are considered; the first part that involves 
in calculations in the affine coordinate system and the 
other part that involves in the calculations for 
converting projective coordinate to affine coordinates. 

For projective calculations, parts 1 and 2 of the LD 
algorithm are considered. In the design of this part of 
the processor, the number of computational units is 
chosen in such a way that allows parallel computations 
to be performed. Hence, we use three field multipliers to 
implement the main loop of the algorithm in which 
point addition and doubling are carried out. So, 
according to Section 2.1 of the LD algorithm, at the first 
stage, the three multiplications ଵܼܺଶ, ܺଶܼଵ, ܼܶଶ (T՜
ܺଶሻ are performed in parallel by using three multipliers 
as is shown in Fig. 6, and then, the three other 
multiplications ݔP ܼ1, ܺ1ܺ2ܶ ܼ2 (T←Z1), ܾܼଶ

ସ are 
accomplished in parallel at the second stage. Hence, the 
delay of each iteration is reduced from six field 
multiplication delay to two field multiplications. For 
this part of the processor (computations in the projective 
coordinates) we have used five squarers and two adders, 
as is shown in Fig. 6. Four squarers are used for 
computing ܼଵ

ସ, X1
4, Z2

4 and X2
4 while the fifth squarer is 

used for (X1Z2+X2Z1)2. In addition, It is essential after 
the first field multiplication to save the result of 
(X1Z2+X2Z1)2 and (X2

4+bZ2
4) in the registers t1 and t2 

respectively for the later calculations. The most 
important modules in the design of the scalar point 
multiplier processor are field multiplication, field 
inversion and field squaring. The key point here is that 
the critical path must be placed on the longest path 
among these modules. Since the inverter module was 
designed such that its critical path is coincided with the 
multiplier’s critical path and since the multiplier’s path 
is larger than the squarer’s path, the critical path need to 
be placed on the multiplier. 

It is notable that if resource sharing is used in 
implementing the field squarer, the number of required 
computational elements will decrease; however, since 
for squaring of different values we are forced to use 
multiplexers at the input of this computational unit that 
are controlled with conditional statements, the critical 
path length will increase. To avoid long critical path, the 
architecture should be designed synchronous and by 
using combinational logic. In addition, in the design of 
the projective calculations, separate calculations have 
not been performed for using the initial values of part 1 
of the LD algorithm, since if further computational 
modules are designed for these calculations, the 
complexity of the critical path and the amount of 
required area will increase. We can avoid additional or 
unnecessary calculations by using calculations of part 2 
of the algorithm for obtaining the results for part 1. In 
the proposed design, calculations of part 1 need to be 
performed whenever the most significant bit of the key 
is 1. So, when ki = 1, if the values of Eq. (14) are used 
in the calculations of part 2.1, then the required initial 
values of the LD algorithm are obtained in accordance 
with part 1 of the LD algorithm. 

X1←1, Z1←0, X2← xP, Z2←1                                     (14) 
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The results of the calculation in section 2.1 of the 
LD algorithm are obtained as Eq. (15) by using the 
values of Eq. (14). 

X1← xP, Z1←1, X2← xP
4+b,  Z2← xP

2                        (15) 

As it is seen in Fig. 7, whenever the key bit is equal 
to 1, the values of ‘1’, ‘0’, and ݔ௉ are entered into the 
multiplexers to connect to the appropriate inputs to 
make the terms of Eq. (15). After designing the 
computational units for projective coordinates, its input 
and output ports should be connected together based on 
the key bits to complete the iteration in the LD 
algorithm. When designing the architecture for 
calculations in the projective coordinate system in part 
2.1 of the LD algorithm, to set up part 2.2 of the 
algorithm which works with zero bits of the key, it is 
enough to swap X1 and Z1 with X2 and Z2 respectively 
when the key bits change. So, we need to use a 2 to 1 
multiplexer that is controlled with the key bits. 
Therefore, in order to avoid long critical path, another 
strategy should be considered. As it is seen from the 
architecture of Fig. 8, in order to prevent further 
complexity when swapping X1 and Z1 with X2 and Z2, 
the input-output paths of point addition and doubling 
have been separated from each other. The idea behind 
this subject is to connect the outputs of point addition 
and doubling to the inputs of the adder, independent of 
the values of the key bits .For example, if we consider 
the following point addition operation for ki =1, inputs 
to this operation are X1, X2, Z1 and Z2 and outputs are 
saved in X1 and Z1. 
 
 

T←Z1, Z1← (X1Z2+X2Z1)2, X1← xPZ1+X1X2TZ2          (16) 
When a key bit changes from ki = 1 to ki = 0, this 

change will lead to change in the terms X1Z2+X2Z1 and 
X1X2TZ2. However, since whenever the value of any key 
bit changes only X1 and Z1 are swapped with X2 and Z2, 
the terms X1Z2+X2Z1 and X1X2TZ2 will remain 
unchanged. So, the point addition operation can be 
repeated in the iterative part of the algorithm without 
involvements of the key bits and only after the end of 
the loop, the registers are swapped with each other. The 
point doubling operation for ki = 1 is performed in 
accordance with Eq. (17). 

T←X2, X2←X2
4 +bZ2

4, Z2←T 2Z2
2                              (17) 

This operation for ki = 0 is done by swapping X2 and 
Z2 with X1 and Z1 respectively. Therefore, output 
registers are swapped in order to provide proper inputs 
for the point doubling operation based on the key bits in 
the iterative part of the LD algorithm. In order to realize 
that when the initial values are entered into the 
calculations and also to be aware of the iterations of the 
LD algorithm based on the key bits, it is necessary to 
combine the module designed in Fig. 8 with a key shift 
register in a new structure. The aim of this work is that 
the inputs and outputs of the architecture of Fig. 8 are 
properly connected to each other when all values of the 
key are scanned. The new design is shown in Fig. 9. The 
second part of the processor involves in calculations that 
convert projective coordinates to affine coordinates. It is 
obvious from the LD algorithm that parts 3 and 4 of this 
algorithm require many calculations to be implemented. 
 

 

 
Fig.6 Block diagram of the LSD multiplier implemented in this work. 
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Fig. 7 Schematic of the designed architecture for finite field multiplicative inversion. 
 

 
Fig. 8 The architecture designed for the computation of point addition and point doubling in projective coordinates of the LD 
algorithm. 
 

 
Fig. 9 Architecture of point addition and doubling iteration based on the key bits. 
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In addition, most of the calculations are performed 
in a sequential manner. A possible sequence of the 
instructions from standard Projective to affine 
coordinates is proposed in [2] in which only one 
inversion unit is used for converting projective 
coordinates to affine coordinates (see Fig. A-1 in the 
appendix for more detail). As it is seen form the LD 
algorithm, by calculating (xPZ1Z2)−1, another inversion, 
X1/Z1, can be calculated using (xPZ2X1)*(xPZ1Z2)−1. In 
this approach, the number of field inverters is reduced 
with the cost of increase in the number of field 
multipliers. However, considering the sequence of the 
algorithm and due to repeated referrals to these 
multipliers, if we use several field multipliers the length 
of the critical path will increase. For implementing this 
algorithm, ten field multiplications should be 
performed. In addition, for performing twelfth to 
seventeenth steps, we need to wait for the calculation of 
(xPZ1Z2)−1 and therefore a long computational delay will 
be inevitable. As it is seen from the second part of the 
scalar multiplier processor which involves in converting 
projective coordinates to affine coordinates, there are 
many computations that should be carried out 
sequentially. 

As was mentioned, in order to keep the critical path 
on the multiplier, we need to design this part of the 
algorithm with combinational logic as much as possible. 
Another approach for the implementation is based on 
step 4 of the LD algorithm as it is seen in Eq. (18). 

y3 ← (xP+X1/Z1)[(X1+xZ1)(X2+xPZ2)+( xP
2+yp)(Z1 Z2)] 

(xPZ1Z2)−1 + yP                                                            (18) 

There are two field inversions and five field 
multiplications in Eq. (18). One way to implement the 
above function is to use two field inverter and three 
parallel field multiplier units. However, this causes that 
these multipliers to remain unused in other stages since 
the results of multiplications in the next steps are 
dependent to the results of the previous steps. This 
subject will cause an unbreakable delay which prohibits 
further speed up. Another design that leads to more 
efficient implementation is to enter (Z1Z2)−1 in the 
square brackets of Eq. (18). This will result in Eq. (19). 

y3 ← (xP +X1/Z1)[( X1/Z1+ xP)( X2/Z2+ xP)+(xP 2+y)]   
(xP)−1 + yP                                                                   (19) 

Therefore, first we calculate Z1
−1, Z2

−1 and xP
−1 using 

three parallel field inverters concurrently and then 
implement five required multiplications of Eq. (19) by 
using two multipliers that are implemented in parallel in 
three stages. Also, for this part of calculations we also 
need five adder units. The final value of variable x in 
affine coordinate system in accordance with part 2 of 
the LD algorithm is x3=X1/Z1 for which we have to 
calculate Z1

−1 by using an inverter and then multiply the 
result by X1. Since X1*Z1

−1 is used for the next 
multiplication, (X1/Z1+xP)*(X2/Z2+xP), it is necessary to 
save the result of X1*Z1

−1. However, saving this value in 

a register and using it in next clock cycles will increase 
the critical path. To avoid this, this register should be 
eliminated. Since in the conversion of coordinates, 
implementation of the multipliers have been done in a 
parallel combinational manner (i.e., five multiplications 
are performed in three stages using two multipliers), in 
the second stage of multiplication the result of first 
multiplication will be lost. However, in the third stage 
of multiplication one of the multipliers is unused and 
could be used for calculating X1*Z1

−1. So, the 
multiplication X1*Z1

−1 is repeated in the third stage to 
eliminate the need for saving data in this section of the 
processor. Finally, one of the important steps that must 
be considered in the design of scalar multiplier is to 
select the word length (G). Due to iterative calculations 
in the projective coordinate system (part 2 of the LD 
algorithm), fast performing of calculations is very 
important in the design of an efficient ECC processor. 
So, choosing large G values for the multipliers used in 
the design of the first part of the processor (i.e., the 
multipliers in Fig. 8 or projective calculations) will be 
more appropriate. The word lengths that were used in 
this part of the processor is G1= 41. Since calculations 
of the third and fourth part of the LD algorithm are used 
only once at the end of the algorithm and there is no 
iteration as part 2 of the algorithm, there is no need to 
select large values for G. Instead, since there are 
relatively a large number of computational units in this 
part of the processor, a relatively small value for G 
should be chosen to reduce the required implementation 
area. The word’s length used in this part of the 
processor is G2=11. 
 
6 Implementation Results 

To perform the calculations, the required parameters 
including curve order (The number of points defined on 
an elliptic curve over GF(2m)), the coefficients and the 
base point coordinates are selected based on the NIST 
proposal in [10]. 
 
a = 1 
b = 0x20A601907B8C953CA1481EB10512F78744A3205FD 
n = 0x40000000000000000000292FE77E70C12A4234C33 
xP = 0x3F0EBA16286A2D57EA0991168D4994637E8343E36 
yP = 0x0D51FBC6C71A0094FA2CDD545B11C5C0C797324F1 
 

The ECC processor was implemented using 
synthesizable VHDL codes. The placement, route 
process, and timing analysis of the synthesized designs 
were accomplished using Xilinx ISE 12.1 software. 
Before final synthesis, we made low-level or synthesis 
optimization that is provided by synthesis tool and is 
performed by its place and route tools. Most 
implementation tools for FPGA synthesis provide the 
designer with dozens of optimization options. They are 
Trade-offs with speed versus area; Resource sharing for 
area optimization; Pipelining, retiming, and register 
balancing for performance optimization and etc. The 
main problem most designers run into is that it is not 
clear what these options do exactly and more 
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importantly how these can be used to actually optimize 
a design. We used Pipelining, retiming, and register 
balancing that led to better results compared with the 
other options. Performance of the proposed scalar 
multiplication is shown in Table 1. As it is seen, a high-
speed implementation is obtained with G1 = 41. The 
proposed design completes the computations in the 
projective coordinates in 326 כ ሺ݉ڿ ⁄ଵܩ  cycles 1304 + (ۀ
and coordinate conversion in 15 כ ሺ݉ڿ ⁄ଶܩ  214 + (ۀ
cycles. The term “݉ڿ ⁄ଵܩ  indicates the number of ”ۀ
cycles required to perform finite field multiplication in 
part 2 of the LD algorithm or calculations in the 
projective coordinate system. The term “݉ڿ ⁄ଶܩ  ”ۀ
indicates the number of cycles required to perform finite 
field multiplication in parts 3 and 4 of the LD algorithm 
or calculations for converting projective coordinates to 
affine coordinates. In Table 2, a number of high speed 
elliptic curve processors are compared with the 
proposed one. It should be noted that an ideal 
comparison would be therefore comparing all resources 
on the similar FPGA device. A design using dedicated 
resources of the device will show less logic resources as 
compared to other design which implements the whole 
logic without using any dedicated unit of the device. It 
also affects the throughput statistic. It has been 
experimentally observed that the implementation of 
even the same code on different grades of the same 
family of devices influence the final design's 
throughput. That situation becomes more crucial when 
the same design targets two different devices by two 
different manufactures. In such cases, for the purpose of 
classifying an FPGA design, we can ignore some of 
those factors. It can be said, as a first approximation, 
that the fastest design is the one which achieves fastest 
speed no matter what type of device has been targeted 
for design implementation. However, when considering 
a compact design (a design optimized for hardware 
area), this criterion cannot be applied. The comparison 
of two compact designs can be only justified if it is 
made between similar devices. Both area and 
throughput factors provide a measure for comparing 
different designs. Additionally, in order to decide how 
efficient a design is, we utilize the efficiency defined as 
்௛௥௢௨௚௛௣௨௧

஺௥௘௔
ሺ

ಾ್೔೟
ೞ

௦௟௜௖௘௦
ሻ as a figure of merit, where 

Throughput is defined as 
௪௢௥௞௜௡௚ ௙௥௘௤௨௘௡௖௬ ൈே௨௠௕௘௥ ௢௙ ஻௜௧௦

ே௨௠௕௘௥ ௢௙ ஼௬௖௟௘௦
 and hardware 

area can be defined as number of four inputs LUTs as 
well as CLB slices. The last column in the table shows 

the algorithmic efficiency defined as throughput/area. It 
would be more accurate to use throughput/#slices, but 
slice counts were not reported by the authors of other 
designs. Therefore, we have used throughput/#LUTs. 
As it is seen from Table 2, the proposed design is more 
efficient than the other designs reported in the open 
literature. Please notice that the work presented in [17] 
consumes less than half of hardware resources 
compared with our implementation, however with the 
proposed design is three times faster than this 
implementation. 
 
Conclusions 

A high-performance ECC processor was 
implemented using FPGA technology. We used a 
careful parallel implementation strategy to reduce the 
critical path of the Itoh-Tsujii’s Finite-Field Inversion 
and used the binary graph tree idea to reduce the critical 
path and the required gates for the implementation of 
the LSD multiplier which in turn will reduce the critical 
path of the field inverter and the processor. In addition, 
in the design of the ECC processor by using three 
parallel multiplier units and reducing the number of 
unused cycles in each stage we reduced the processor 
delay which is mainly related to the calculations in the 
projective coordinate system. Separation of point 
doubling path from point addition path and using 
appropriate initial values for the initial setup of the 
processor reduced the complexity of the processor. In 
the design of the second part of the processor which 
involves in converting projective coordinates to affine 
coordinates and with considering the subject that the 
field multiplier module is used many times and this part 
of the processor has little impact on the final delay, we 
used the minimum possible word length to save our 
hardware resources as much as possible. The results 
show that our design is suitable for high speed and/or 
compact applications and therefore, the designed 
architecture can be well suited to the applications that 
require high performance. The proposed design is able 
to compute GF(2163) elliptic curve scalar multiplication 
operations in 11.92 ߤs with the maximum achievable 
frequency of 251 MHz on Xilinx Virtex-4 
(XC4VLX200) while 19604 slices or 22% of the chip 
area is occupied. Although prototyped in reconfigurable 
logic, the architecture does not exclusively make use of 
reconfigurability and it is also well-suited for other 
implementation technologies such as ASIC 
implementations. 

 
 
Table 1 Performance of the proposed scalar multiplier. 

 

G1 G2 Freq. (MHz) Time (μs) No. of Cycles Area (Slices) Area (LUT) Efficiency 

41 11 251.054 11.92 2993 19604 36727 372 
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Table 2 Performance of the scalar multipliers. 

Efficiency 
(FF) 

Area 

(LUT) (slices) 

Time 

(μs) 

Freq. 

(MHz) 
FPGA m Ref. 

265 1769 3002 - 210 76.7 XCV400E 167 
Orlando and Paar 

[10] 

56 6321 20068 - 144 66.4 XCV2000E 163 N. Gura [11] 

44 - - 18079 106 90.2 VinexII V8000 163 Jarvinen et. al. [12] 

- - - 

18314 + 

24 

RAMs  

63 46.5 XCV2600E 163 
Rodriguez et. al. 

[13] 

- - - - 60 54 XC2V600-4 163 Cheung [14]  

- - - 8450 280 100 Virtex II pro 30 163 Sakiyama [15] 

316 - 26364 16209 19.55 153.9 Virtex-4 VLX200 163 
Chelton and 

Benaissa [16] 

532 - 7559 3416 46.5 100 XC2V2000 163 
Ansari and Hasan 

[17] 

340 - 2812 13376 34.11 93.3 XC2V6000 163 Yong et.al. [18] 

- - - 24,363  10 143 XC4VLX80 163 Kim et. al. [19] 

70 1930 10017 - 75 66 Virtex 2000E 163 
Lutz and Hasan 

[23] 

- - - - 49 - Stratix II 163 
Jarvinen and Skytta 

[24] 

 
 
 
Appendix 

The ITIMA Algorithm 
Let a be any arbitrary nonzero element in the field 

GF(2m). Let us consider an addition chain U of length 
for m — 1 and its associated sequence V. Then the 
multiplicative inverse a-1 א GF(2m) of a can be found by 
repeatedly applying Eq. (A-1). 

௞ା௝ሺܽሻߚ ൌ ሺܽሻ൧2݆݇ߚൣ 

,݆ ݕ݊ܽ ݎ݋݂    ሺܽሻ݆ߚ ݇ ൒ 0               (A-1) 

Hence, given ߚ௨బሺܽሻ ൌ  ܽଶభିଵ ൌ ܽ,  for each ݑ௜, 
1 ൑ ݅ ൑  :compute ,ݐ

ቂߚ௨೔భ
ሺܽሻቃ

ଶೠ೔మ

2ݑߚ
ሺܽሻ = 1݅ݑߚା2݅ݑ

ሺܽሻ = ߚ௨೔
ሺܽሻ = ܽଶି݅ݑଵ   (A-2) 

A final squaring step yields the required result since: 

௨೟ߚൣ
ሺܽሻ൧ଶ ൌ  ቀܽ2೘షభെ1ቁ

ଶ
ൌ  ܽିଵ                                      (A-3) 

Table A-1 represents ߚ௜ሺܽሻ coefficient generation 
for m = 163. 
 
 

Fig. A-1 Standard projective to affine coordinates algorithm 
[2]. 
 
 

Require: Q1 = (X1, Z1), Q2 = (X2, Z2), P = (xP, yP) א 
E(GF(2m)) 
Ensure: (x3, y3)/* affine coordinates */ 
1: λ1 = Z1 * Z2; 
2: λ2= Z1 * xP; 
3: λ3 = λ2 + X1; 
4: λ4= Z2 * xP; 
5: λ5 = λ4* X1; 
6: λ6 = λ4+ X2; 
7: λ7 = λ3 * λ6; 
8: λ8= xP

 2 + yP; 
9: λ9= λ1 * λ8; 
10: λ10 = λ7 + λ9; 
11: λ11= xP* λ1; 
12: λ12 = inverse (λ11); 
13: λ13= λ12 * λ10; 
14: x3= λ14 = λ5 * λ12; 
15: λ15 = λ14 + xP; 
16: λ16= λ15 * λ13; 
17: y3= λ16 +yP; 
18: Return (x3, y3) 
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Table A-1 β୧ሺaሻ Coefficient Generation for m-1 =162 [2]. 
 

i ݑ௜ rule ቂߚ௨೔భ
ሺܽሻቃ

ଶೠ೔మ

· ௨೔మߚ
ሺܽሻ 

௨೔ߚ
ሺܽሻ

ൌ ܽଶೠ೔ିଵ 

0 1 - - 
௨బߚ

ሺܽሻ

ൌ ܽଶభିଵ 

௨బߚൣ ଴ݑ2 2 1
ሺܽሻ൧ଶೠబ

· ௨బߚ
ሺܽሻ 

௨భߚ
ሺܽሻ

ൌ ܽଶమିଵ 

௨భߚൣ ଵݑ2 4 2
ሺܽሻ൧ଶೠభ

· ௨భߚ
ሺܽሻ 

௨మߚ
ሺܽሻ

ൌ ܽଶరିଵ 

௨మߚൣ ଶݑ଴൅ݑ 5 3
ሺܽሻ൧ଶೠబ

· ௨బߚ
ሺܽሻ 

௨యߚ
ሺܽሻ

ൌ ܽଶఱିଵ 

௨యߚൣ ଷݑ2 10 4
ሺܽሻ൧ଶೠయ

· ௨యߚ
ሺܽሻ 

௨రߚ
ሺܽሻ

ൌ ܽଶభబିଵ 

௨రߚൣ ସݑ2 20 5
ሺܽሻ൧ଶೠర

· ௨రߚ
ሺܽሻ 

௨ఱߚ
ሺܽሻ

ൌ ܽଶమబିଵ 

௨ఱߚൣ ହݑ2 40 6
ሺܽሻ൧ଶೠఱ

· ௨ఱߚ
ሺܽሻ 

௨లߚ
ሺܽሻ

ൌ ܽଶరబିଵ 

௨లߚൣ ଺ݑ2 80 7
ሺܽሻ൧ଶೠల

· ௨లߚ
ሺܽሻ 

௨ళߚ
ሺܽሻ

ൌ ܽଶఴబିଵ 

௨ళߚൣ ଻ݑ଴൅ݑ 81 8
ሺܽሻ൧ଶೠబ

· ௨బߚ
ሺܽሻ 

௨ఴߚ
ሺܽሻ

ൌ ܽଶఴభିଵ 

௨ఴߚൣ ଼ݑ2 162 9
ሺܽሻ൧ଶೠఴ

· ௨ఴߚ
ሺܽሻ 

௨వߚ
ሺܽሻ

ൌ ܽଶభలమିଵ 
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